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Abstract
In dusty (complex) plasmas, containing mesoscopic charged grains, the grain–grain interaction
in many cases can be well described through a Yukawa potential. In this review we summarize
the basics of the computational and theoretical approaches capable of describing many-particle
Yukawa systems in the liquid and solid phases and discuss the properties of the dynamical
density and current correlation spectra of three- and two-dimensional strongly coupled Yukawa
systems, generated by molecular dynamics simulations. We show details of the ω(k) dispersion
relations for the collective excitations in these systems, as obtained theoretically following the
quasi-localized charge approximation, as well as from the fluctuation spectra created by
simulations. The theoretical and simulation results are also compared with those obtained in
complex plasma experiments.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Strongly coupled plasmas—in which the average potential
energy per particle dominates over the average kinetic
energy—appear in a wide variety of physical systems: dusty
plasmas, charged particles in cryogenic traps, condensed
matter systems such as molten salts and liquid metals, electrons
trapped on the free surface of liquid helium, astrophysical
systems, such as the ion liquids in white dwarf interiors,
neutron star crusts, supernova cores and giant planetary
interiors, as well as in degenerate electron or hole liquids in
two-dimensional or layered semiconductor nanostructures [1].
Many of these systems share some properties, which allows
us to model them by considering explicitly only a single type
of charged species and using a potential that accounts for the
presence and effects of other types of species. This latter may
be thought of as forming a charge-neutralizing background,
which is either non-polarizable or polarizable. In the first
case the interaction of the main plasma constituents can be
expressed by the 1/r Coulomb potential, while in the case of
polarizable background the use of the exp(−r/λD)/r Yukawa
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potential is appropriate to account for screening effects (λD is
the Debye length). Perhaps the most important realizations
of systems lending themselves to the approximation of the
interaction by the Yukawa potential are charged colloids [2–5]
and dusty (complex) plasmas [6] (for a comprehensive review
on dusty plasmas see, e.g., [7, 8]).

In the case of 2D colloidal systems the microscopic
particles move in thin liquid films or between two closely
separated glass plates.

In dusty plasmas both three-dimensional (3D) and two-
dimensional (2D) settings appear in nature and in laboratory
environments. In laboratory experiments 2D systems appear as
a layer of dust particles levitated in gaseous discharges. While
most of the studies on this latter system have been carried
out in the crystalline state (for early references to ‘plasma
crystals’ see [9–12]), the liquid state has been receiving more
current attention [13–18]. The important difference between
colloidal and dusty plasma systems is in the damping rate in
particle dynamics and concomitantly in the wave dynamics.
In colloidal suspensions the background liquid exerts a large
friction on the moving charged particles, while in dusty
plasmas the background is gaseous and therefore the friction
is lower and the damping of the waves is weak. For this
reason our focus in this review will be directed at dusty
plasmas. The review will cover studies of strongly coupled
plasmas mostly in the liquid state, where both free motion and
localization intervene. The principal observation is that, from
the point of view of collective behavior, it is the localization—
even though imperfect localization or quasi-localization—of
particles that plays the principal role. In contrast to the Vlasov
plasma where the collective modes arise from the fluid-like
continuum behavior, in the strongly coupled liquid they are
more related to the normal modes of the interacting quasi-
localized particles. This, of course, suggests a link with
the harmonic phonon theory of crystal lattices. At the same
time, one has to allow for the randomness of the distribution
of the particles and for the finite lifetime of the localization
in the constantly changing potential landscape. This latter
process is expected to be primarily responsible for the damping
of the collective modes, in contrast both to Vlasov plasmas,
where Landau damping dominates, and to weakly correlated
plasmas, where collisional damping is the principal damping
mechanism. This physical picture suggests a microscopic
equation-of-motion model where the particles are trapped in
local potential fluctuations. The particles occupy randomly
located sites and undergo oscillations around them. At the
same time, however, the site positions also change and a
continuous rearrangement of the underlying quasi-equilibrium
configuration takes place. Inherent in this description is
the assumption that the two timescales are well separated
and that for the description of the fast oscillating motion,
the time average (converted into ensemble average) of the
drifting quasi-equilibrium configuration is sufficient. Here the
distinction between the ‘direct’ and ‘indirect’ thermal effects
should be emphasized: the former are responsible for the actual
motion and migration of the particles, the latter refer to the
accessibility of the possible configurations of the random sites
and to the temperature dependence of the probability of a
particular configuration.

The interaction potential energy of particles in Yukawa
liquids is given by (e.g. [19])

φ(r) = Q2

4πε0

exp(−r/λD)

r
, (1)

where Q is the charge of the particles, ε0 is the permittivity
of free space and the Debye length λD accounts for the
screening of the interaction by other plasma species. The
main (dimensionless) parameters, which fully characterize the
systems, are: (i) the coupling parameter (defined in the same
way as for Coulomb systems):

� = Q2

4πε0

1

akBT
, (2)

where a is the Wigner–Seitz (WS) radius and T is the
temperature, and (ii) the screening parameter

κ = a

λD
. (3)

� is the customary measure of the ratio of the average potential
energy to the average kinetic energy per particle; the strong
coupling regime, relevant here, corresponds to � � 1. In the
κ → 0 limit the interaction reduces to the Coulomb type, while
at κ → ∞ it approximates the properties of a hard-sphere
interaction.

At κ = 0, in 3D, the liquid domain is limited to coupling
parameter values � � 175 [20–22], where the plasma is known
to crystallize into a bcc lattice [23, 24]. In 2D, crystallization
into a hexagonal lattice occurs at a lower value of coupling,
at � � 137, as found by computer simulations [25, 26] and
proven by experiments [27] as well. At κ > 0, 3D systems
may crystallize either in a bcc or in an fcc lattice, depending
on κ , as found by Hamaguchi et al [28] in their calculation of
the phase diagram of Yukawa systems. In 2D the crystallized
form of the systems is always hexagonal.

The possibility of characterizing a Yukawa liquid with an
effective coupling coefficient �	 instead of a (�, κ) parameter
pair has recently been addressed. In 3D �	 was derived by
Vaulina, Fortov and coworkers [29–31] on the basis of the
frequency of dust lattice waves. Subsequently, for 2D Yukawa
liquids the �	 = f (�, κ) relationship was established by
prescribing a constant amplitude for the first peak of the pair
correlation function for fixed values of �	 [32]. The solid–
liquid melting line (�melting versus κ) in both 3D and 2D system
was found in these studies to follow closely constant�	 values.

Additional characteristic parameters of the systems
investigated here are the WS radius a and the plasma frequency
ω0, which are given for 3D and 2D systems by

a3D = (4n3Dπ/3)
−1/3 (4)

a2D = (n2Dπ)
−1/2, (5)

where n3D and n2D are the 3D (number) density and the 2D
areal (number) density of particles, and

ω0,3D =
√

n3D Q2

ε0m
(6)
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and

ω0,2D =
√

n2D Q2

2ε0ma2D
. (7)

Note that in 2D the nominal plasma frequency ω0 may also
have different definitions, and some of the authors use the
lattice constant instead of the WS radius as a length scale.

Other important frequencies characterizing strongly
coupled plasmas are the Einstein frequencies, which are the
normal modes of oscillation of a test charge in the presence of
a given (static) distribution of charges. Einstein frequencies
are well known for lattice structures: however, there has
been relatively little work done on disordered and liquid-phase
systems [33]. Such systems are being studied through the
combination of theoretical and simulation approaches [34, 35].

As to the possibilities of theoretical description, many-
body systems can be treated theoretically in a straightforward
way in the extreme limits of both weak interaction and very
strong interaction. In the first case, one is faced with a
gaseous system, or a Vlasov plasma, where correlation effects
can be treated perturbatively (� � 1). In the case of very
strong interaction, the system crystallizes, the particles are
completely localized and phonons are the principal excitations.
In the intermediate regime—in the strongly coupled liquid
phase—the localization of the particles in the local minima
of the potential surface still prevails. However, due to
the diffusion of the particles the time of localization is
finite [34]. The localization of the particles (which may
typically cover a period of several plasma oscillation cycles)
serves as the basis of the quasi-localized charge approximation
(QLCA) method [36, 37]. Besides the theoretical approaches
computer simulations have proven to be invaluable tools for
investigations of strongly coupled liquids of charged particles.
Monte Carlo (MC) and molecular dynamics (MD) methods
have been widely applied in studies of the equilibrium and
transport properties, as well as of dynamical effects and
collective excitations. The main difference between the
two techniques is that, in an MC simulation, the particle
configuration with the lowest energy is searched for, whereas
MD simulations provide information about the time-dependent
phase space coordinates of the particles, this way allowing
studies of dynamical properties.

This paper intends to review the dynamical properties and
collective behavior of strongly coupled Yukawa systems in the
liquid and solid phases, in two and three dimensions. First we
describe the numerical as well as theoretical methods used, in
sections 2 and 3, respectively. The analysis of the collective
mode behavior of a 3D liquid is presented in section 4.1. In
the 2D case we investigate both an ideally narrow particle
layer and a layer having a finite width, where particles are
confined by an external parabolic potential. The analysis of
these systems is described in sections 4.2 and 4.3, respectively.
Section 5 gives a brief summary of the experimental studies
relevant to the theoretical and simulation results reviewed.
Section 6 gives a summary of the paper as well as a short
outlook on the topics, which may have been additional subjects
of this review.

2. Molecular dynamics simulations

Molecular dynamics simulations follow the motion of particles
by integrating their equations of motion while accounting for
the pairwise interaction of the particles, as well as for the forces
originating from any external field(s) (see, for example, [38]).
In the plasma/gas background environment friction forces and
randomly fluctuating forces also act on the particles in addition
to the forces arising from the interaction of the electrically
charged particles. The general form of the equation of motion
(of a ‘test’ particle i ) is (see, for example, [39])

mr̈i =
∑
i �= j

Fi, j (t)+ Fext(t)− mηvi(t)+ R, (8)

where Fi, j is the force originating from the interaction with
particle j , Fext is the force originating from any external
field, η is the friction coefficient and R represents a Brownian
randomly fluctuating force (Langevin force). The results
presented here correspond to ‘idealized’ Yukawa liquids for
which η = 0 and R = 0 are assumed. Also, in most of
our studies we investigate infinite (unconfined) systems, for
which Fext = 0 as well, although as an example a quasi-two-
dimensional liquid—confined by an external parabolic field—
is also studied. In the case of unconfined systems periodic
boundary conditions (PBC) are imposed in the simulations. In
the case of confinement along one of the coordinates, PBCs are
used in the unconfined directions. It is noted that for charged
colloids Brownian molecular dynamics simulation [3, 40] is
widely used, which represents the extreme limit of large
friction and large R. In this case the inertial term (mr̈i ) in
equation (8) is neglected.

The calculation of the force acting on a particle of
the system, Fi , is relatively simple in the case of short-
range potentials (like the Lennard-Jones potential or the 1/r 12

potential). In this case MD methods make use of the
truncation of the interaction potential thereby limiting the
need for the summation of pairwise interactions around a
test particle to a region of finite size. In the case of long-
range interactions (e.g. Coulomb or low-κ Yukawa potentials),
which are also of interest here, however, such truncation of the
potential is not allowed and thus special techniques, like Ewald
summation [41], have to be used in MD simulations. Besides
the Ewald summation technique there exist few additional
methods, like the fast multipole method and the particle–
particle particle–mesh method (PPPM or P3M), which can
be used to handle long-range interaction potentials (see, for
example, [42]). The results presented here for Coulomb
systems have been obtained from simulations using this latter
method [43–47]. In the PPPM scheme the interparticle force
is partitioned into (i) a force component FPM that can be
calculated on a mesh (the ‘mesh force’) and (ii) a short-
range (‘correction’) force FPP, which is to be applied to
closely separated pairs of particles only. In the mesh part of
the calculation charged clouds are used instead of point-like
particles and their interaction is calculated on a computational
mesh, taking also into account periodic images (for more
details see [46, 47]). This way the PPPM method makes it
possible to take into account periodic images of the system
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(in the PM part), without truncating the long-range Coulomb
or low-κ Yukawa potentials. For screening values κ � 1
the PP part alone provides sufficient accuracy. In these
cases the mesh part of the calculation is not used and the
interaction forces are summed for particles situated within a (κ-
dependent) cutoff radius around the test particle. Identification
of these ‘neighboring’ particles is aided by the ‘chaining mesh
technique’.

In the simulations presented here usually a spatially
random particle configuration is set up at initialization, with
particle velocities sampled from a Maxwellian distribution of
temperature T0, which corresponds to the desired value of the
coupling parameter � (see equation (2)). The equations of
motion of the particles are integrated using the leapfrog scheme
or the velocity-Verlet scheme. The desired system temperature
is reached by rescaling the particle momenta during an
initialization phase of the simulation. MD simulations
measurements on the system are performed following this
phase, in the state of thermodynamic equilibrium. During
this phase thermostation is usually no longer applied. If
thermostation is necessary, rescaling of particle velocities is
to be avoided and algorithms like the Nosé–Hoover thermostat
can be applied (see, e.g., [38, 48, 49]).

In our studies measurements on the system are taken at
constant volume (V ), particle number (N) and total energy
(E). The MD simulations directly provide the pair correlation
function (PCF) of the system, which is the basis for the
calculation of thermodynamic quantities (not detailed here,
see, e.g., [32]), and is also required as input to the QLCA
equations for the calculation of the dispersion relations and
other quantities (see later).

In the MD simulation information about the (thermally
excited) collective modes and their dispersion is obtained from
the Fourier analysis of the correlation spectra of the density
fluctuations

ρ(k, t) = k
∑

j

exp[ikx j(t)] (9)

yielding the dynamical structure function as [50]

S(k, ω) = 1

2πN
lim

�T →∞
1

�T
|ρ(k, ω)|2, (10)

where �T is the length of the data recording period and
ρ(k, ω) = F[ρ(k, t)] is the Fourier transform of (9).

Similarly, the spectra of the longitudinal and transverse
current fluctuations, L(k, ω) and T (k, ω), respectively, can be
obtained from Fourier analysis of the microscopic quantities

λ(k, t) = k
∑

j

v j x(t) exp[ikx j(t)],

τ (k, t) = k
∑

j

v j y(t) exp[ikx j(t)],
(11)

where x j and v j are the position and velocity of the j th
particle. Here we assume that k is directed along the x
axis (the system is isotropic) and accordingly omit the vector
notation of the wavenumber. The way described above for the
derivation of the spectra provides information for a series of
wavenumbers, which are multiples of kmin = 2π/H , where H

is the edge length of the simulation box. The collective modes
are identified as peaks in the fluctuation spectra. The widths of
the peaks provide additional information about the lifetimes of
the excitations: narrow peaks correspond to longer lifetimes,
while broad features are signals for short-lived excitations.

3. Theoretical approaches

The molecular dynamics calculations compute the dynamical
density–density and current–current correlations (dynamical
structure functions), from whose behavior the dispersion
relations for the collective modes can be inferred. Following
the same route in a theoretical analysis would be an extremely
ambitious undertaking. Calculating the dynamical structure
functions is not an easy task and not much progress has
been achieved so far along this line. The single-particle and
collective microscopic dynamics of a classical 3D Yukawa
fluid was first analyzed by Barrat et al [51], on the basis
of memory function and mode-coupling theories. They have
found that the longitudinal current fluctuations and the velocity
autocorrelation function cross over continuously from the
behavior characteristic of classical fluids with short-range
interactions to the dynamics of a one-component plasma as the
screening parameter κ of the Yukawa potential is reduced.

2D Yukawa systems in the liquid phase were considered
by Löwen [40] and Murillo and Gericke [52]. In this
latter work radial distribution functions were computed
with the hypernetted chain equations and were compared
through those obtained from molecular dynamics simulations.
The dynamical structure function obtained from the RPA
approach extended by local field corrections was shown to
be inadequate to reproduce the features of the structure
function obtained from molecular dynamics. Reference [40]
focused mostly on the static properties and Brownian
dynamics of the system, while also considering some features
of the dynamical fluctuations. Applying the viscoelastic
approximation Murillo [53] analyzed some aspects of the
transverse current fluctuations.

Fortunately, for the determination of the collective mode
spectrum a much more direct approach, via the analysis of the
dielectric response (tensor) function, is available. Thus, the
primary goals of the analytical methods discussed below are
the determination of the dielectric function and the derivation
of the ensuing dispersion relation for the collective modes.

The dielectric tensor in the spatially homogeneous liquid
phase is diagonal in the coordinate system, where k is along
one of the coordinate axes. Accordingly, the collective modes
can be classified by their polarization into longitudinal and
transverse modes. In the crystalline solid phase the rotational
symmetry is broken, the structure of the dielectric tensor is
more intricate and the longitudinal and transverse polarizations
do not, in general, represent eigenpolarizations anymore. In
this review we are concerned primarily with the collective
mode structure of the liquid phase, but the understanding of
the behavior of the collective modes in the solid phase has a
bearing, as we will discuss, on the formation of the collective
modes in the strongly coupled liquid phase as well.
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3.1. Fluctuation–dissipation theorem

The link between the S(k, ω), L(k, ω), T (k, ω) spectra
measured in the simulations and the dielectric function is
provided by the fluctuation–dissipation theorem:

S(k, ω) = 1

ω2
L(k, ω) = 1

πβnω
ImχL(k, ω)

= 1

πβnω

Im χ̄L(k, ω)
|εL(k, ω)|2 ,

T (k, ω) = − ω

πβn
ImχT(k, ω),

(12)

where β = 1/kT , χμν(k, ω) is the susceptibility tensor and
χ̄μν(k, ω) is the proper (or total) susceptibility tensor.

At the � value where the dispersion relation is satisfied,
χ−1

L,T(k,�) vanishes. This, in general, happens only at
a complex frequency, the imaginary part of which being
characteristic of the damping of the mode. Since the
dynamical structure functions are plotted and analyzed for real
frequencies only, χ−1

L,T(k,�) reaches only a minimum at some
value of the real ω, which can be expected to be in the vicinity
of the actual complex�: this is the frequency value that can be
identified at which the peak of the fluctuation spectrum occurs.

3.2. Dielectric response function

The tensorial dielectric response function εμν(k, ω) can be
expressed either in terms of the susceptibility tensor χμν(k, ω)
or the proper (or total) susceptibility tensor χ̄μν(k, ω) and the
Fourier transform φ(k) of the interaction potential (1). This
latter depends on the dimensionality of the system. In 3D

φ(k) = 1

ε0

Q2

k2 + (κa)2
(13)

and in 2D

φ(k) = 1

2ε0

Q2

(k2 + (κa)2)1/2
. (14)

Then
εμν(k, ω) = δμν − ϕ(k)χμν(k, ω). (15)

In the coordinate system where k is along the z axis in 3D and
along the y axis in 2D, the isotropic liquid εμν(k, ω) has the
structure

εμν(k, ω) =
[
εT(k, ω) 0 0

0 εT(k, ω) 0
0 0 εL(k, ω)

]
      3D

εμν(k, ω) =
[
εT(k, ω) 0

0 εL(k, ω)

]
               2D

(16)

and the dispersion relations for the collective modes are given
by

εL(k, ω) = 0, (17a)

ε−1
T (k, ω) = 0. (17b)

The longitudinal dielectric function has the immediate physical
significance that it relates the externally imposed electric field
to the total (external + polarization) field by Etotal(k, ω) =
Eexternal(k, ω)/εL(k, ω). In contrast, the transverse dielectric

function has well-defined physical meaning only in terms of
the full electrodynamics of the system [54]. Here, there is a
certain degree of arbitrariness in the definition of εT(k, ω). A
useful alternative formulation of the dispersion relations is in
terms of the external susceptibility

χL(k, ω) = χ̄L(k, ω)
εL(k, ω)

,

χT(k, ω) = χ̄T(k, ω).

(18)

This allows us to express the condition for the collective
excitation in the universal form

χ−1
L,T(k, ω) = 0. (19)

χ̄μν(k, ω) embodies all the dynamical properties of the
system, which stem partly from interparticle correlations and
partly from the random motion of the particles. Over the past
half-century an immense effort has gone into the calculation of
this quantity for Coulomb systems, both classical and quantum.
Most of the work focused on weakly coupled (� � 1) or
moderately coupled (1 < � < 10) systems. Interest in strongly
coupled Coulomb and Yukawa systems is more recent [55, 56].
In the strongly coupled domain the dynamics is dominated by
correlations. Here and in the following we will mostly ignore
the effect of thermal motions on χμν(k, ω); some comments
on how to abandon this simplification will be made later in this
section.

While our focus in this review is on the strongly coupled
liquid phase, it will be instructive and of interest to begin
with an orientation based on the weakly coupled random phase
approximation (RPA) theory. The RPA or Vlasov description
is based on the assumption that the mean field dominates the
particle–particle interaction and correlations can be ignored.
This is tantamount to taking χ̄μν(k, ω) as that of the non-
interacting gas (although perhaps not quite obviously: for a
discussion see, e.g., [57]): χ̄μν(k, ω) = χ0(k, ω)δμν , which,
with the neglect of thermal motion, is

χ0(k, ω) = n

m

k2

ω2
. (20)

This leads to the simple expressions for the elements of the
dielectric tensor:

εL(k, ω) = εT(k, ω) = 1 − k̄2

k̄2 + κ2

ω2
0,3D

ω2
,           3D

εL(k, ω) = εT(k, ω) = 1 − k̄2(
k̄2 + κ2

)1/2

ω2
0,2D

ω2
,       2D 

(21)

where ω0,3D and ω0,2D are the respective 3D plasma frequency
and the 2D nominal plasma frequency defined in equations (6)
and (7); k̄ = ka.

The dispersion relations (and their small-k approxima-
tions) for the 3D and 2D longitudinal modes follow immedi-
ately from (17a)

�2
0,3D(k) = ω2

0,3D

k̄2

k̄2 + κ2
≈ ω2

0,3D

κ2
k̄2,              3D

�2
0,2D(k) = ω2

0,2D

k̄2(
k̄2 + κ2

)1/2 ≈ ω2
0,2D

κ
k̄2.          2D

(22)
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For k → 0 the longitudinal mode is acoustic, i.e. ωL(k →
0) = sk, with the 3D and 2D acoustic velocities s3D and s2D:

s3D = ω0,3D

κ
,

s2D = ω0,2D√
κ
.

(23)

Note that, if we compare 3D and 2D systems with the same
average interparticle distance, the acoustic speed in 2D is

different by a factor
√

2
3κ from that in 3D. The acoustic

behavior in 2D is, of course, at complete variance with the
corresponding k → 0 of an unscreened Coulomb plasma,
i.e. the limit κ = 0, where ω ∝ √

k.
It is clear that there is no mode satisfying the transverse

dispersion relation (17b): the mean-field RPA model, which is
devoid of correlations, cannot support a transverse shear wave,
since shear is a fundamentally correlational phenomenon.

3.3. Quasi-localized charge approximation

While the RPA provides a description of the weakly coupled
gas, the strongly coupled liquid state of a Coulombic or
Yukawa system requires a different approach. There have
been various attempts over the years to calculate dispersion
relations and related quantities for such systems. Noteworthy
approaches include the high frequency sum rule method [50],
the application of the STLS (Singwi, Tosi, Land and
Sjolander) technique originally developed for the electron gas
in metals [58, 59], the memory function approach [60, 61] and
the viscoelastic model [53, 62–64].

In the long run, from a practical perspective most of these
methods have turned out to be problematic. The problems that
occur vary: they range from a weak theoretical foundation
through being more appropriate for static than dynamical
processes, to resulting in an unwieldy formalism. On the other
hand, a method originally proposed by Kalman and Golden
in [65] that has become known as the quasi-localized charge
approximation (QLCA) (for a review see [36, 37]) has led to
quite a successful history of accomplishments. The measure
of success in this context is (a) the ability to calculate from
available static data dynamical quantities that lend themselves
to comparison with numerical or laboratory experiments;
(b) solid agreement with the outcomes of MD simulations;
and (c) a good accord with the newly available laboratory
experiments (still a rather limited number) on complex plasma
wave propagation. The following is a concise description of the
QLCA method; for more details the reader is referred to [36].

The conceptual basis for the QLCA has been a model
that implies the following assumptions about the behavior
of a strongly coupled Coulomb or Yukawa liquid: (i) in
the potential landscape within the many-body system deep
potential minima form that are capable of trapping (caging)
charged particles; (ii) a caged charge oscillates with a
frequency that is determined both by the local potential
and the interaction with the other (caged) particles in their
instantaneously frozen positions; (iii) the potential landscape
changes slowly to allow the charges to execute a fair number
of oscillations; (iv) the escape from the cages of the particles is

caused by the gradual disintegration of the caging environment;
the timescale of this process is governed by the coupling
strength �; (v) the (time-and velocity-dependent) correlation
between a selected pair of particles is well approximated by the
(time-and velocity-independent) equilibrium pair correlation;
(vi) the frequency spectrum calculated from the averaged
(correlated) distribution of particles represents, in a good
approximation, the average over the distribution of frequencies
originating from the actual ensemble.

Hypotheses (i)–(iv) have undergone careful testing
by a series of MD simulation experiments both for
Coulomb and Yukawa systems, and both for 2D and 3D
configurations [34, 35], which will be discussed in section 4.
The validity of hypothesis (v) has recently been called into
question in relation to multicomponent systems. The short-
time evolution of the pair correlation function in the vicinity
of a particle moving with respect to its environment can
certainly be velocity-dependent and anisotropic: it is now
believed that it is this behavior that is responsible for some
discrepancies between MD simulation results and QLCA
predictions occurring in binary Coulomb and Yukawa systems.
It is not believed, however, that this behavior would be
problematic in a single-component system. As to item (vi),
the question of the dynamical frequency distribution in a
liquid has received very little attention, either theoretically or
experimentally (the record is better in relation to disordered
crystals, where the problem has been posed and approximation
schemes have been proposed, although in a language where
the central role of the dispersion relation is obscured—see,
e.g., [66]). The extension of the QLCA in this direction, while
less than pressing, would be desirable.

The central quantity in the QLCA is the dynamical matrix,
either in three dimensions (D = 3) or in two dimensions
(D = 2):

Dμν(k) = − n

m

∫
dDr Mμν(r)[eik·r − 1]h(r), (24)

which is formally similar to the eponymous quantity in the
harmonic theory of lattice phonons and is derived from
the equation of motion of properly constructed collective
coordinates. Mμν(r) = ∂μ∂νφ(r) is the dipole–dipole
interaction potential associated with φ(r). Dμν(k) is a
functional of the equilibrium pair correlation function (PCF)
h(r), or of its Fourier transform h(k).

The longitudinal and transverse elements of the dielectric
tensor are now expressed in terms of corresponding elements
of Dμν(k):

εL/T(k, ω) = 1 − �2
0(k)

ω2 − DL/T(k)
. (25)

Thus the DL(k) and DT(k) local field functions are the
respective projections of Dμν(k) [36]. �0(k) is the 3D or 2D
longitudinal mode frequency, found in (22). One should keep
in mind that, in spite of the universality of the expression (24),
the explicit forms of the 3D and 2D εL(k, ω)s are quite
different.

We note that the input required in the calculations is the
static pair correlation function (PCF). In earlier works PCFs
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Figure 1. 2D Yukawa and Coulomb liquids: QLCA longitudinal and transverse dispersions for specified values of the effective coupling �	.

generated by the HNC (hypernetted chain [67]) technique
have been used as input data for the QLCA formulae to
calculate the dispersion relations. With the advent of computer
simulation techniques it turned out to be both more expedient
and more accurate to import simulation-generated PCFs in
the theoretical calculations. The results of the theoretical
calculations presented in this paper use PCFs derived from
molecular dynamics (MD) computations.

We can now examine the dispersion relations that emerge
from (24) and (25) in conjunction with (17a) and (17b). We
will consider both the 2D and 3D cases with the corresponding
results for the dispersion relations displayed in figures 1 and 2,
respectively. Figure 3 will compare the sound velocities and
Einstein frequencies for these two cases.

Turning first to the 2D case, the longitudinal dispersion
relation becomes

�2
L(k) = �2

0,2D(k)+ DL(k)

= �2
0,2D(k)+ ω2

0,2Dk̄2
∫ ∞

0
�2D(k̄r̄ , κ r̄)h(r) dr̄

�2
0,2D(k) = ω2

0,2D

k̄2

(k̄2 + κ2)1/2

(26)

where r̄ = r/a, and

�2D(x, y) = e−y

2x2
{(1 + y + y2)[1 − J0(x)]

+ 3(1 + y + y2/3)J2(x)}. (27)

J0 and J2 are Bessel functions of the first kind.
In the mode frequency in (26) the RPA solution and the

additional correlational part expressed in terms of the pair
correlation function h(r) are clearly separated. The result
can, however, be transformed into an alternate form, expressed
entirely in terms of the pair distribution function g(r) = 1 +
h(r). By introducing the extended dynamical matrix Cμν(k):

�2
L(k) = − n

m

∫
d2r ML(r)

[
eik·r − 1

]
g(r) ≡ CL(k)

= ω2
0,2D k̄2

∫ ∞

0
�2D

(
k̄r̄ , κ r̄

)
g(r̄)dr̄ . (28)

This result shows that the RPA contribution can be interpreted
in terms of the same physical model as the QLCA: in
this unified formulation the RPA force experienced by the
oscillating particle is due to the mean field [h(r) = 0]
only. Moreover, a reflection on the origin of the ‘1’ term
in the integrand identifies it as the generator of the Einstein
frequency, the frequency of oscillation of a single particle in the

7
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Figure 2. 3D Yukawa and Coulomb liquids: QLCA longitudinal and transverse dispersions for specified values of the effective coupling �	.

Figure 3. 2D and 3D Yukawa and Coulomb liquids: ((a), (b)) QLCA sound velocities and (c) Einstein frequencies.
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frozen immobile environment of the other particles (see more
discussion below):

�2
E = n

m

∫
d2r ML(r)g(r)

= ω2
0,2D

1

2

∫ ∞

0

dr̄

r̄ 2
e−κ r̄ [1 + κ r̄ + (κ r̄)2]g(r̄). (29)

The k → 0 behavior of the longitudinal mode is still acoustic,
but the correlations reduce the acoustic (sound) speed below
its RPA value. For k → ∞ the mode frequency approaches
the Einstein frequency �E. This limiting behavior is a
remarkable feature of strongly coupled Coulomb and Yukawa
liquids [68, 69].

In contrast to the weakly coupled gas described through
the RPA, the strongly coupled liquid supports a shear-
maintained transverse mode. This is reflected in the QLCA
through the transverse dispersion relation

�2
T(k) = DT(k)

= ω2
0,2D

k̄2

2

∫ ∞

0
�2D

(
k̄r̄ , κ r̄

)
h(r̄) dr̄

= ω2
0,2D

k̄2

2

∫ ∞

0
�2D

(
k̄r̄ , κ r̄

)
g(r̄) dr̄                     2D,    (30)

where

�2D(x, y) = 2
e−y

x2
(1+ y + y2)[1− J0(x)]−�2D(x, y). (31)

The last step in (30) follows from a simple algebraic identity
and it reflects the absence of a mean transverse field in the
medium.

The longitudinal and transverse dispersion curves for
selected κ and � values are displayed in figure 1. The
k → 0 behavior of the transverse mode is also acoustic,
but the correlation-maintained acoustic speed is substantially
below its longitudinal counterpart. However, the result that the
transverse mode extends all the way to k = 0 is spurious: the
liquid is unable to support a shear wave in the uniform limit.
The reason for this flaw is well understood: it has to be sought
in the neglect of the migrational–diffusional damping. The
introduction of a phenomenological collision frequency [70] or
of a semi-phenomenological extension of the QLCA (studied
so far only for the Coulomb case—see below) [68] provide an
acceptable remedy.

For k → ∞ the transverse mode also approaches the same
Einstein frequency�E as the longitudinal mode, as dictated by
the isotropy of the liquid.

Also shown in figure 3 are the κ and � dependences of the
acoustic speeds and of the Einstein frequency. For moderate κ
values the sound velocities can also be obtained from the semi-
analytic formulae [71]:

s2
L = ω2

0,2Da2

κ

[
1 − κ

2

(
5

8
− κ2

2

∂

∂κ2
+ 3κ4

2

∂2

∂κ4

)
β|Ec|
�

]
,

s2
T = ω2

0,2Da2

2

(
1

8
− κ2

2

∂

∂κ2
− κ4

2

∂2

∂κ4

)
β|Ec|
�

,

(32)
where Ec = (n/2)

∫
φ(r)[g(r) − 1] d2x is the correlation

energy per particle.

Turning now to the 3D case, the formal results of the
previous derivation can, mutatis mutandis, be taken over,
with the understanding that the explicit forms of the RPA
frequency �2

0,3D(k) and the kernels �(k̄r̄ , κ r̄) and �(k̄r̄ , κ r̄)
are different from their 2D counterparts:

�2
0,3D(k) = ω2

0,3D

k̄2

k̄2 + κ2
                                        3D     (33)

�3D(x, y) = −2
e−y

x2

[
(1 + y + y2)

×
(

sin(x)

x
+ 3

cos(x)

x2
− 3

sin(x)

x3

)

− y2

6

(
1 + 3

sin(x)

x
+ 12

cos(x)

x2
− 12

sin(x)

x3

)]
(34)

and

�3D(x, y) = 1

2

[
e−y

x2
y2

(
1 − sin(x)

x

)
−�3D(x, y)

]
. (35)

There are now two degenerate transverse modes.
The expression for the Einstein frequency is also modified:

�2
E = n

m

∫
d3r ML(r)g(r)

= ω2
0,3D

κ2

3

∫ ∞

0
dr̄ r̄e−κ r̄ g(r̄).                                3D     (36)

The 3D longitudinal and transverse dispersion curves for
selected κ and � values are displayed in figure 2. The κ and
� dependences of the 3D acoustic speeds and of the Einstein
frequency are shown, together with their 2D counterparts, in
figure 3. Finally, for moderate κ values the sound velocities
can again be obtained from the semi-analytic formulae [70, 72]

s2
L = ω2

0,3Da2

×
{

1

κ2
+ 2

15

∫ ∞

0
r̄e−κ r̄

[
1 + κ r̄ + 3

4
(κ r̄)2

]
[g(r̄)− 1] dr̄

}
(37)

and

s2
T = ω2

0,3Da2

×
{
− 1

15

∫ ∞

0
r̄e−κ r̄ [1 + κ r̄ − 1

2 (κ r̄)2][g(r̄)− 1] dr̄

}
.

(38)

The results of a comparison between the dispersion
properties of the collective modes in the 2D and 3D systems
(assuming the same interparticle distance) may be summarized
as follows.

(i) While for finite κ values the qualitative behaviors of the
two systems are very much the same, there is the well-
known fundamental difference in the κ = 0 Coulomb
limit between the 2D and 3D systems as to the small-k
dispersion of the longitudinal mode: ω(k → 0) ∝ √

k for
2D, but in the 3D case ω(k = 0) = ω0,3D, the 3D plasma
frequency.

9
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(ii) Not unrelated to this difference is the behavior of the
longitudinal acoustic speeds at finite κ values: since in
2D s ∝ 1/

√
κ and in 3D s ∝ 1/κ , for small κ the latter

exceeds the former by the factor
√

3/2κ .
(iii) In contrast, the transverse acoustic speeds exhibit only a

mild κ dependence and it is the 2D speed that is slightly
higher than its 3D counterpart.

(iv) A similar 2D dominance prevails for the respective
Einstein frequencies that govern the k → ∞ behavior of
the modes: in 2D the Einstein frequency assumes, for any
κ , a somewhat higher value than in 3D.

While (i) and (ii) are effects originating from the basic
difference caused by the long-range behavior of the Coulomb
potential in a 2D versus a 3D geometry and are already
reflected in the RPA description, (iii) and (iv) are correlational
phenomena and they point at the more important role the
correlations play in 2D than in 3D.

As a closing comment, it should be re-emphasized that
the QLCA ignores possible damping mechanisms and Doppler
shift, phase mixing, etc, due to the migrational–diffusive
motion of the particles and of velocity dispersion. A method
has been recently proposed [73–76] for the extension of the
QLCA to take some of the neglected effects into account by
combining the DL(k), DT(k) as local field factors with the
Vlasov density–density response. In this approximation

εL,T = 1 − φ(k)χ0,L,T(k, ω)

1 − φ(k)χ0,L,T(k, ω)[D(k)/�2
0(k)]

, (39)

where χ0,L,T(k, ω) is the longitudinal (transverse) Vlasov
density response function of non-interacting particles. The
application of this formalism to Yukawa systems has not been
done yet, but in an early work [68] it was shown that in a
2D Coulomb system the combined effect of phase mixing and
Landau damping leads to the elimination of oscillations in the
dispersion curve. The effect of Landau damping, which is not
expected to play a major role at high � values, is probably
overestimated in this work.

3.4. Lattice phonons

With the caveat that the present review addresses primarily the
strongly coupled liquid state, it will still be useful to provide
an overview of the phonon dispersion in a 2D or 3D Yukawa
crystal. Such an overview will help us to understand the
structure of the liquid state in terms of a model resembling a
disordered lattice and to view the collective modes in the liquid
as being akin to the phonon excitations in the lattice.

The phonon dispersion is traditionally calculated in terms
of the lattice dynamical matrix defined as

Cμν(k) = − 1

m

∑
i, j

Mμν(ri − r j )[e−ik·(ri −r j ) − 1], (40)

with a summation over all the lattice sites j , keeping i fixed
(ri = 0). The resemblance to the extended QLCA dynamical
matrix is not accidental. In contrast to the QLCA equivalent,
however, the lattice dynamical matrix reflects the symmetry
of the underlying lattice and not the rotational invariance of

the isotropic liquid. Nevertheless, a dielectric tensor can
be constructed along the same line in terms of the matrix
Dμ,ν(k), which is defined now as Cμ,ν(k) with its mean-field
contribution removed:

Dμν(k) = Cμν(k)+ 1

m

∫
dDr Mμν(r)[e−ik·r − 1]. (41)

This leads to a structure analogous to (25):

εμν(k, ω) = δμν −
[
�2

0(k)

1 − D(k)

]
μν

. (42)

The diagonalization of εμν (or of Cμν) is now possible in the
coordinate system of the eigenvectors, whose orientations, in
general, do not coincide either with the direction of k or with
the crystallographic axes.

To find the eigenmodes one can follow the traditional
method (see, e.g., [77, 78]) of solving the secular equation

‖ω2 − Cμν(k)‖ = 0, (43)

or continuing to follow the path of working with the dielectric
tensor. This latter approach ensures that continuity with the
liquid and RPA formalism is maintained. The dispersion
relation in terms of εμ,ν becomes

kμεμνkν = 0, (44)

an obvious generalization of (17a). In fact, except in the
degenerate isotropic case, it also includes the transverse
relation (17b).

The 2D Yukawa system crystallizes in a triangular
(hexagonal) lattice. The phonon spectrum was first calculated
by Peeters and Wu [80], followed by Wang et al [81]; a
definitive calculation of the dispersion and the polarization
for all propagation angles is given in [79, 82]. These
results are shown in figure 4. The mode polarizations are
purely longitudinal or transverse for propagation along the
crystallographic axes (ϕ = 0◦ and 30◦) only, otherwise they
are mixed as shown in the figure. ϕ is the propagation angle
measured from the axis pointing towards the nearest neighbor.
The angle � indicated in figure 4 is the polarization angle
measured with respect to the propagation vector k. The
dispersion curves are periodic in k, but the period is simply
the reciprocal lattice constant only along 0◦ and 30◦; for
intermediate angles it is much longer, given by the formula

k̄0 = 4π√
3

√
p2 + pq + q2, (45)

where p and q are minimal integers satisfying

tan
(π

6
− ϕ

)
= √

π
p

p + 2q
. (46)

The dispersion curves of the lattice and those of the
strongly coupled liquid do not show much resemblance. Yet,
if one views the liquid as an aggregate of locally ordered
domains whose symmetry axes are randomly distributed, then
the similarity to the liquid dispersion should be sought in a
suitably averaged dispersion of the lattice. The strong angular
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Figure 4. 2D Yukawa system: lattice dispersion curves and polarizations (κ = 2) for different angles of propagation. ϕ is measured from the
axis pointing towards the nearest neighbor and� is the polarization angle measured with respect to the propagation vector k. Partly
reproduced from [79], copyright (2006) by Institute of Physics Publishing.

dependence of the period k0 suggests that an angular average
should generate through phase-mixing a smooth dispersion.
This was carried out by projecting out the longitudinal and
transverse components of the eigenmodes and comparing
their respective angular averages with the longitudinal and
transverse liquid modes [82]. Figure 5 shows that the
agreement is quite reassuring. In principle, of course, one
has to distinguish between the spectrum of an average of
configurations and the average of the spectra of each of
the configurations: that this observation notwithstanding, the
similarity, persists can be taken as an indication that the sizes

of the ordered domains in the liquid state are sufficiently large
to diminish the effect of interaction between the domains.

The 3D Yukawa system crystallizes in a bcc or fcc lattice
(depending on the value of κ). A phase diagram has been
given by Hamaguchi et al [28]. Due to the existence of three
rather than two eigenmodes and to their dependence both on
the azimuthal and the polar angles of propagation a much
more complex phonon spectrum is expected than in 2D. So
far no systematic published study of this spectrum seems to
exist; in an unpublished work, however, Sullivan, Kalman
and Kyrkos [83] have generated a series of dispersion and
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Figure 5. 2D Yukawa system: angularly averaged lattice (dashed
lines) and QLCA (solid lines) dispersions of longitudinal and
transverse modes using pair correlation [g(r)] data from MD
simulation at � = 360 and κ = 2. Reproduced from [79], copyright
(2006) by Institute of Physics Publishing.

polarization diagrams. A sample of these, for a number of
ϕ and ψ angles, including propagations along the principal
crystallographic axes is given in figure 6. (� is the polarization
angle measured with respect to the propagation vector k, ϕ
is the polar angle in the (x, y) plane and ψ is the azimuthal
angle measured from the z axis.) Since no averaging has been
performed, their comparison with the liquid spectrum at the
present time is difficult.

3.5. Einstein frequencies

In addition to the collective excitations, Einstein frequencies
represent a dynamical manifestation of the strong interaction
in Yukawa systems. Einstein frequencies, as noted above,
are the frequencies of oscillation of a single particle of the
system (the ‘test particle’) around its equilibrium position in
the immobilized frozen environment of the other particles of
the system. For obvious reasons, from the experimental point
of view the ‘freezing’ of the system all but for one particle is
not a realistic proposition.

Thus, until the advent of dusty plasma experiments
Einstein frequencies were considered more of a theoretical
construct than an observable quantity. The realization,
however, that in the strongly coupled liquid state (but not in the
crystalline solid) they represent the asymptotic k → ∞ limit
of the mode dispersion has promoted the Einstein frequency to
the rank of observable quantities [84, 85].

In the crystalline solid state, where the test particle
occupies a lattice site, the assumption that the potential
experienced by the test particle is a quadratic function of
the coordinates with a positive definite second derivative
is in accord with the basic model of the harmonic theory
of phonons. The maximum number of eigenfrequencies
of oscillation is equal to the dimensionality of the system
(D = 2 or D = 3); because of the lattice-symmetry-
induced degeneracy the actual number may be less than D.
In a disordered lattice the degeneracy is removed and the
frequencies depend on the actual realization of the disorder.
In this case one has to distinguish between the ‘microscopic’
Einstein frequencies (ωE) each of which is generated by a

particular realization of the disorder and characterized by a
distribution over the ensemble, and their ensemble average

�E =
√

〈ω2
E〉. It is this latter that will be continued to be

referred to as ‘Einstein frequency’ in the rest of this paper.
In addition, it is useful to consider the quantity

ω̄2
E =

D∑
i=1

ω2
E,i , (47)

i.e. the sum of the squared eigenfrequencies in a particular
realization. Obviously, 〈ω2

E〉 = 〈ω̄2
E〉 but the distributions of

ω2
E and ω̄2

E can be quite different.
In a strongly coupled liquid the very notion of

‘equilibrium position’ is questionable. Nevertheless, the
‘quasi-localization’ condition, the basic tenet of the QLCA,
is well satisfied for high � values, as demonstrated by MD
experiments [34], the details of which will be discussed below.
It is in this sense that the notion of the Einstein frequency
and its distribution can be extended to the case of the strongly
coupled liquid.

In a 3D Coulomb crystal the Einstein frequency is
determined solely by the background, unaffected by the
distribution of the (frozen) particles. This is the consequence
of the Gauss theorem which, in turn, follows from the Poisson
equation that the 3D Coulomb potential satisfies. In this case

ω2
E = 1

3ε0

Q2n

m
= 1

3
ω2

0,3D. (48)

In a disordered lattice or in a liquid (48) is not valid anymore;
it is replaced by the weaker statement

ω̄2
E = 1

3ω
2
0,3D, (49)

the so-called Kohn Sum Rule [86], which also follows from the
Poisson equation.

Thus, in a disordered system, while ω2
E has a spread, ω̄2

E
does not. As to the average, (49) is of course also tantamount
to

�2
E = 1

3ω
2
0,3D. (50)

For a genuine Yukawa potential the situation is quite
different. The Yukawa potential satisfies the screened Poisson
equation rather than the Poisson equation. A useful statement
can now be made only for �E, which can now be expressed
in terms of the average of the Yukawa potential 〈φ〉 as
experienced by the test particle at r = 0 [33]:

�2
E = κ2

3m
〈φ〉

= ω2
0,3D

κ2

3

∫ ∞

0
dr̄ r̄e−κr g(r̄)

= ω2
0,3D

1
3

[
1 + κ2

∫ ∞

0
dr̄ r̄e−κr h(r̄)

]
. (51)

Equation (51) is in agreement with (36), the result obtained
from the QLCA. The third line clearly shows that, remarkably,
in the κ → 0 Coulomb limit the Yukawa Einstein frequency
reduces to the background induced (50), even though the
Yukawa system exists without any background. It can also
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Figure 6. 3D Yukawa system at κ = 1: bcc lattice dispersion curves (left column) and polarizations (right column). � is the polarization
angle measured with respect to the propagation vector k. Continuous line: longitudinal; dashed line: first transverse; dotted line: second
transverse polarizations. Note that the two transverse polarizations may be, but in general are not, degenerate. ϕ is the polar angle in the (x, y)
plane and ψ is the azimuthal angle measured from the z axis.
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be noted that 1
2 〈φ〉 = Eint is the interaction energy density of

the system (with [positive] Hartree plus [negative] correlation
contributions). Since the energy is the lowest in the ordered
state, the Einstein frequency must increase with increasing
disorder. According to the known phase diagram of the
3D Yukawa system [28]—as already mentioned—the system
crystallizes in a bcc or fcc lattice. The corresponding Einstein
frequencies [87]:

�2
E(κ = 0) = 0.333 33 ω2

0,3D

�2
E(κ = 1) = 0.222 93 ω2

0,3D

�2
E(κ = 2) = 0.094 16 ω2

0,3D

(52)

constitute an absolute lower bound.
In the 2D Coulomb system the Gauss theorem does not

apply, the background plays no role and neither the Poisson
equation nor its screened variant is satisfied. Consequently,
the Einstein frequency is determined by the distribution of the
surrounding particles, both for Yukawa and Coulomb systems.
In general

�2
E = 1

m
〈Mμ,ν (r = 0)〉

= ω2
0,2D

∫ ∞

0

dr̄

r̄ 2
e−κ r̄ 1

2
[1 + κ r̄ + (κ r̄)2]g(r̄) (53)

in agreement with the QLCA result (29).
An argument similar to the one discussed in relation to the

3D case leads to the conclusion that here also the ordered state
exhibits the lowest Einstein frequency. The lattice structure is
now hexagonal, for which

�2
E(κ = 0) = 0.399 25 ω2

0,2D

�2
E(κ = 1) = 0.344 33 ω2

0,2D

�2
E(κ = 2) = 0.243 47 ω2

0,2D.

(54)

These values constitute then the lowest bound for the 2D
Einstein frequencies.

In addition to the frequencies, the Einstein oscillations
are also characterized by their eigenpolarizations. It is the
distribution of the polarization angles which is of interest;
this question has been investigated, however, only for the 2D
case [82]. In the perfect hexagonal lattice the degeneracy
of the eigenmodes renders this distribution isotropic. It
is also isotropic in the liquid phase. However, in the
intermediate range where the lattice disorder develops, the
degeneracy for the microscopic eigenmodes is removed and the
rotational invariance of the distribution is reduced to the sixfold
symmetry of the underlying lattice. More will be shown about
this remarkable effect in section 4.2.

4. Simulation results

In this section we review the results of the extensive MD
simulation work carried out since the beginning of this
decade on the dynamical properties of Yukawa liquids.
Most of the work was motivated by the QLCA theory and

accordingly a great portion of the results pertaining to the areas
where QLCA predictions are available are accompanied by
comparisons with the theoretical predictions. However, the
information generated by the simulations goes well beyond
those predictions: this is eminently true for the frequency
spectra of the dynamical density–density and current–current
correlation functions (dynamical structure functions S(k, ω),
L(k, ω), T (k, ω)). Beyond predictions pertaining to the peak
positions of the spectra, identified as the frequencies of the
collective excitations, the QLCA does not provide, apart from
some qualitative estimates, any basis for comparison in this
respect. While other works, based mostly on the memory
function formalism [51, 80, 81, 88], have presented theoretical
descriptions of some of the features of the structure functions,
we have made no attempt to relate to these, rather scant, results
for the purpose of comparison with simulations.

As noted in section 3.3, the basic hypotheses (i)–(iv) of
the QLCA theory have undergone careful testing by a series
of MD simulation experiments both for Coulomb and Yukawa
systems and both for 2D and 3D configurations [34, 35].
With increasing � values, a visual inspection of the
potential landscape clearly indicates the formation of potential
wells [35]. Examination of the phase space trajectories reveals
a clear morphological difference between low � and high �
situations: in the first case the trajectories are open, interrupted
by propagating oscillatory portions, while in the second case
the trajectories are mostly closed and exhibit a loop structure
characteristic of localized oscillatory motion [34]. An example
of this behavior is illustrated for a 3D Coulomb liquid in
figures 7(a) and (b) for � = 2.5 and � = 160, respectively.

The quantification of the relationship between localization
and the strength of the coupling has been carried out by
invoking a technique due to Rabani et al [89]. Here a
‘cage correlation function’ was introduced to characterize the
gradual disintegration of the cage of the nearest neighbors and
the escape of the caged particle. The main results shown in
figures 7(c) and (d) for 3D and 2D Coulomb and Yukawa
systems illustrate the duration (in terms of plasma oscillation
cycles) of the caging (decorrelation time, Tdecorr) as a function
of � and κ . In the case of the 3D system, at κ = 0 and
� = 160 the cages decorrelate during ≈50 plasma oscillation
cycles. The decorrelation time is reduced to a single cycle at
� ≈ 7. In the case of the 2D system it takes about 100 cycles
for the cages to decorrelate at κ = 0 and � = 120, and we
reach Tdecorr = 1 at � ≈ 2.5. In the high-� domain we observe
a strong dependence of the decorrelation time on κ , both in
3D and 2D systems. At low values of �, however, Tdecorr

depends only slightly on κ . The decrease of the decorrelation
time for increasing κ can be compensated by increasing �, as
can be seen in figures 7(c) and (d) [35]. It is noted that the
data shown in figure 7 convey information about the ‘average
behavior’ of the particles: it is, however, recognized [35]
that the surroundings of individual particles may change in a
different way, due to, for example, avalanche type excitation
and migration [90]. Finally we note that the caging of the
particles at high � values determines many of the system’s
properties as has been discussed by Daligault for 3D Coulomb
liquids [91].
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Figure 7. Phase space trajectory segments of a test particle in a 3D Coulomb liquid at (a) � = 2.5 and (b) � = 160. H is the edge length of
the simulation box. Decorrelation time of the cages (Tdecorr = ω0tdecorr/2π) as a function of � for the (c) 3D and (d) 2D systems, for a series of
κ values, obtained from MD simulations. ((a), (b)): reproduced from [34], copyright (2002) by the American Physical Society.
((c), (d)): reprinted with permission from Donkó et al [35], copyright (2003) by the American Institute of Physics, [35].

4.1. Three-dimensional Yukawa liquids

The first molecular dynamics simulations on the wave
dispersion relations in the fluid phase of 3D Yukawa systems
were reported by Hamaguchi and Ohta [92, 93]. Their results
confirmed the earlier theoretical predictions of Rosenberg
and Kalman [72] on the longitudinal wave dispersion and
were mostly in agreement with the simultaneously published
full QLCA calculations of Kalman et al [70]. They also
demonstrated that the transverse wave dispersion has a cutoff
at a long wavelength even in the case of weak screening.

This work was followed by a series of MD simulations
for the collective excitations in 3D Yukawa liquids to provide
further comparison with the predictions of the QLCA theory.
The simulations—of which the results are presented here for
the first time—have been carried out using N = 12 800–15 625
particles.

To illustrate qualitatively the features of the behavior of
the collective excitations the spectral decomposition of the
longitudinal and transverse current fluctuations is plotted in
figure 8 for three-dimensional Coulomb and Yukawa liquids.
In the case of the Coulomb plasma, at low wavenumbers the
frequency of the longitudinal (L) mode is concentrated within
a narrow frequency range (see figure 8(a)) near the plasma
frequency. With increasing wavenumber the frequency of
the mode gradually spreads over a wider domain and shows
a slightly decreasing tendency. In sharp contrast with this
behavior the T mode frequency is spread over a wide domain,
as illustrated in figure 8(b). The L mode of the Yukawa

system is quite different from that in the Coulomb case: the
wave frequency approaches zero at k̄ → 0 wavenumber. The
frequency increases with increasing wavenumber up to about
k̄ = 2.0, and then starts to decrease slightly. Meanwhile the
frequency distribution gets gradually wider. The T mode in the
Yukawa case appears to be similar to the corresponding mode
in the Coulomb system, although the frequency is lower, due
to the weaker interaction of the particles, as a consequence of
the screened potential.

For a better quantitative analysis representative dynamical
structure functions (density fluctuation spectra) S(k, ω) and
spectra of the longitudinal and transverse current fluctuations,
L(k, ω) and T (k, ω), are plotted in figures 9 and 10,
respectively, for a high-� and a medium-� case. The S(k, ω)
obtained for the Coulomb case (� = 160, κ = 0, see
figure 9(a)) peaks at nearly the same frequency for the different
values of the wavenumbers plotted, which are multiples of
k̄min = 0.167 (determined by the size of the simulation box).
In the presence of screening (Yukawa potential), as shown in
figure 9(d), the behavior of S(k, ω) changes significantly: at
k̄ → 0 the wave frequency ω/ω0 → 0 (ω0 is defined by (6)).
The contrast between the κ = 0 and the κ > 0 cases is also
well seen in figure 11(a), where the dispersion curves derived
from the fluctuation spectra are displayed. The (�, κ) pairs for
which the dispersion graphs are plotted in figure 11 have been
selected to represent a constant effective coupling �∗ = 160.
This definition of �∗ relies on the constancy of the first peak
amplitude of the pair correlation function g(r̄), similarly to the
case of 2D Yukawa liquids [32].
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Figure 8. 3D Yukawa and Coulomb liquids: spectral decomposition of the longitudinal and transverse current fluctuations in Coulomb
((a), (b)) and Yukawa ((c), (d)) plasmas, at � = 160, κ = 0, and � = 380, κ = 2, respectively. (The color coding (shading) of the amplitude
is logarithmic; it is only intended to illustrate qualitative features.)

Peaks in the spectra of the compressional L mode (plotted
in panels (b) and (e) of figures 9 and 10) appear at the same
frequency as those in the corresponding S(k, ω) functions, as
these functions are linked via the relation

L(k, ω) = ω2S(k, ω). (55)

Compared to those characterizing the L mode, peaks in the
T mode spectra are rather broad, as can be seen in panels (c)
and (f) of figures 9 and 10. In the case of this mode there is no
dramatic change between the behavior when κ changes from
zero to a nonzero value: only the mode frequency decreases,
as can be observed in figure 11(b).

Comparison of the dispersion relations obtained from the
MD simulations (via S(k, ω)) and QLCA calculations (see
equations (33)–(35)) is presented in figure 11. Here, in
the calculations of the QLCA results, we have made use of
the g(r) functions obtained from the MD simulation. The
agreement between the two sets of data is excellent for the
L mode, while some difference in the frequency of the T
waves can be seen in figure 11(b). This latter may originate
from the inaccurate determination of the peak positions of
the rather broad T (k, ω) spectra. It should be noted, though,
that while the theoretical calculations provide an oscillatory
dispersion curve for k̄ > 3 (see figure 2), simulations provide
reliable results (for collective excitations) for typical liquid-
phase conditions for k̄ � 3 only. (At higher k̄ values the
thermal contribution in S(k, ω) apparently masks the collective
mode peak.) The simulation results in this domain resemble
the measured 2D dispersion curves in the liquid phase [15].

Another difference is the cutoff of the T mode dispersion
curve at finite wavenumbers. This disappearance of the shear
modes for k̄ → 0 is a well-known feature of the liquid
state [50, 95, 96], and the sharp cutoff ω → 0 for a finite k has
also been observed in simulations of Yukawa systems [53, 93].
It has been already noted that this cutoff is not accounted for
by the QLCA, as it does not include damping effects.

The sound velocities, derived in (37), are plotted in
figure 12(a), while figure 12(b) displays the Einstein frequency,
which is defined in (36). In the κ → 0 limit (36) gives ωE =
ω0/

√
3 and ωE decreases with increasing κ . For comparison,

the Einstein frequency data of Ohta and Hamaguchi for a fcc
lattice [94] are also plotted in figure 12(b). We find an excellent
agreement between the two sets of data.

Numerical experiments were also performed to determine
the distribution of the microscopic Einstein frequency ωE.
To accomplish this, frequency histograms based on a few
hundred, temporally uncorrelated particle configurations were
constructed. For the raw (particle position) data the harmonic
matrix for each particle has to be generated:

H (i)
αβ =

N∑
j �=i

∂2φ(|req
i − r j |)

∂ri,α∂ri,β
, (56)

where req
i is the equilibrium position of the i th particle (local

minimum of the potential surface), φ(r) is the interaction
potential, and α and β represent the Cartesian coordinates. The
eigenvalues of Hαβ/m are the squared Einstein frequencies
(three for each particle), while the eigenvectors provide the
polarization of the oscillation.
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Figure 9. 3D Yukawa and Coulomb liquids: density [S(k, ω)] and current (L(k,ω) and T (k, ω)) fluctuation spectra of Coulomb � = 160,
κ = 0 ((a)–(c)) and Yukawa � = 200, κ = 1 ((d)–(f)) systems. The curves are plotted for multiples of the smallest accessible wavenumber
k̄min = 0.167. (g) and (h) show the dependence of L(k, ω) and T (k, ω), respectively, on κ at fixed wavenumber k̄ = 1.00. (� = 360 for
κ = 2, and � = 1050 for κ = 3.)

A series of frequency histograms for an effective coupling
parameter �	 = 120 and different values of κ are shown in
figures 13(a)–(d). The frequency distributions exhibit three
peaks (although this is less visible in the κ = 3 case). With
increasing screening the distribution of frequencies becomes
wider and its mean value is shifted towards lower frequency.
The QLCA results for the Einstein frequency (obtained from

equation (36) using pair correlation functions generated in the
MD simulation), corresponding to the different values of κ ,
are also indicated in figures 13(a)–(d). The values are in good
agreement with the simulation results. The effect of � at fixed
(κ = 0) screening is illustrated in figure 13(a). A six-time
decrease of the coupling parameter results in an approximately
doubled width of the Einstein frequency distribution.

17



J. Phys.: Condens. Matter 20 (2008) 413101 Topical Review

Figure 10. 3D Yukawa and Coulomb liquids: density [S(k, ω)] and current (L(k, ω) and T (k, ω)) fluctuation spectra of Coulomb � = 20,
κ = 0 ((a)–(c)) and Yukawa � = 48, κ = 2 ((d)–(f)) systems. The curves are plotted for multiples of the smallest accessible wavenumber k̄min

= 0.156. (g) and (h) show the dependence of L(k, ω) and T (k, ω), respectively, on κ , at fixed wavenumber k̄ = 1.56. (� = 25 for κ = 1, and
� = 114 for κ = 3.)

Figure 13(e) shows the histograms for ω̄2
E, sums of the

three microscopic squared Einstein frequencies, for different
values of κ : there is a qualitative difference between the κ = 0
Coulomb case where there is only a single frequency (a narrow
peak) and the κ > 0 cases, where a distribution of frequencies
is apparent. The reason for this difference has been discussed
in section 3.

Further information on the collective behavior is contained
in the velocity autocorrelation function (VACF):

Z(t) = 〈v(t)v(0)〉
〈|v(0)|2〉 , (57)

where the average is taken over the N particles and different
initial times.
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Figure 11. 3D Yukawa and Coulomb liquids: dispersion relations for the (a) longitudinal and (b) transverse modes. ◦: � = 160, κ = 0
(Coulomb case), •: � = 200, κ = 1, : � = 380, κ = 2, and �: � = 910, κ = 3. Symbols represent molecular dynamics results, while the
lines correspond to the predictions of the QLCA theory.

Figure 12. 3D Yukawa and Coulomb liquids: (a) sound velocities and (b) Einstein frequency as derived from the QLCA theory (circles) and
Einstein frequencies of the fcc lattice (stars) [94].

The behavior of the velocity autocorrelation functions of
3D Yukawa liquids obtained at several values of the � and κ
parameters is illustrated in figure 14. Analyzing the behavior
of Z(t) at constant κ , we find a transition from monotonically
decreasing Z(t) into an oscillating type when � is increased
(figure 14(a)). Similarly, the shape of Z(t) changes drastically
when κ is varied at constant �, as shown in figure 14(b). For
more detailed analysis see [94].

Using the Einstein frequency ωE for the normalization of
time, instead of the plasma frequency ω0 (as in figure 14), the
Z(t) functions belonging to the same �	 = 160 for a series of
κ values are displayed in figure 15(a). Using this normalization
of the timescale, the Z(t) curves exhibit a nearly universal
behavior, where at least the first few peaks of Z(t) nearly
overlap. This observation emphasizes the importance of the
Einstein frequency in the dynamical behavior of the system.

The marked oscillations of the Z(t) function in the
Coulomb case is indeed expected on the basis of the
possible coupling between the single-particle motion and
long-wavelength plasmons, whose frequencies are almost
independent of k. For κ > 0, however, even though ω(k →
0) ∝ k, the oscillations persist; this can be explained by
the fact that the ω(k) dispersion curve flattens at higher
wavenumbers and a corresponding peak in the frequency
distribution develops.

The Fourier transforms Z(ω) of the VACF functions
(obtained at different κ values but for constant effective

coupling �	 = 160) are portrayed in figure 15(b).
The dominant peaks in the spectra—shifting towards lower
frequencies with increasing κ—correspond to the high
frequency oscillations of the Z(t) functions (easily observed
visually). As discussed in previous studies (see, e.g., [94, 96])
these peaks are related to longitudinal current fluctuations,
while the broad features at low frequencies are connected to
the transverse current fluctuations and are related to diffusion
properties of the system. Taking the case of κ = 2 as an
example, figure 8(c) indicates that most of the energy of the
L mode is concentrated around frequencies ω/ω0

∼= 0.5, in
correspondence with the peak of the Z(ω) function shown in
figure 15(b). The T (k̄, ω) spectra (see figure 8(c)) for any k̄
are broader, compared to the L(k̄, ω) spectra: the fluctuations
in the transverse currents are distributed over a rather broad
frequency domain, again in agreement with the behavior of
the corresponding Z(ω) function. The observed features of
Z(ω) indicate an appreciable coupling between single-particle
motion and collective excitations in the 2D system.

In addition to the peaks in the frequency spectrum of
the dynamical structure functions a wealth of further physical
information is contained in the detailed structures of these
quantities. Of great importance would be the understanding of
the evolution of the width of the frequency spectra as functions
of k and �, since it is related to the damping of the collective
modes. To illustrate the behavior of the dynamical structure
function figure 16 shows the widths of the collective mode
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Figure 13. 3D Yukawa and Coulomb liquids: Einstein frequency distributions for �	 = 120: (a) � = 120, κ = 0; (b) � = 150, κ = 1;
(c) � = 300, κ = 2; (d) � = 725, κ = 3; the vertical bars indicate values obtained by the QLCA theory. (a) also shows the distribution of
frequencies at the lower coupling value � = 20. (e) Distribution of ω̄2

E for the same systems.

Figure 14. 3D Yukawa and Coulomb liquids: (a) velocity autocorrelation functions at κ = 1.0 and a series of � values; (b) at constant
� = 100, for a series of κ values.

peaks as a function of wavenumber, for effective coupling
values �	 = 20 and 120, for κ = 0 and 2. It is noted that
Murillo has provided a formula for the width of the transverse
current spectrum [53].

4.2. Two-dimensional Yukawa liquids

Most of the available experimental evidence on waves in
complex plasmas relates to 2D systems (see section 5); much

less information can be culled from observations on 3D
systems. Thus the understanding of the collective mode
structure in the different phases of the 2D Yukawa system
has been of great current interest: over the past few years a
substantial amount of simulation work was performed on 2D
Yukawa liquids [71, 97]. In the following we present these
MD simulation results on the dispersion properties of the liquid
state and compare them with the theoretical predictions of the
QLCA analysis of the collective modes.
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Figure 15. 3D Yukawa and Coulomb liquids: (a) velocity autocorrelation functions for a series of κ values; the time is normalized by the
Einstein frequency ωE. (b) Corresponding Fourier transforms Z(ω), for (�, κ) pairs as indicated in (a).

Figure 16. 3D Yukawa and Coulomb liquids: spectral linewidth of functions S(k, ω) ((a), (b)), L(k, ω) ((c), (d)) and T (k, ω) ((e), (f)) for
�	 = 20 and 160 effective coupling at κ = 0 and 2.

Representative density fluctuation spectra, as well as
longitudinal and transverse current fluctuation spectra of the
2D Yukawa liquid, are displayed in figure 17. The dispersion
curves derived from the simulation spectra S(k, ω) for both
modes are displayed in figure 18. The results shown in the

latter figure at κ = 0 reproduce the known 2D Coulomb
dispersion [95, 98]. With increasing κ the mode frequencies
rapidly diminish and the dispersion deviates more substantially
from its RPA value. In the k → 0 limit both modes
exhibit an acoustic behavior, with longitudinal and transverse
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Figure 17. 2D Yukawa and Coulomb liquids: density [S(k, ω)] and current (L(k, ω) and T (k, ω)) fluctuation spectra of Coulomb � = 120,
κ = 0 ((a)–(c)) and Yukawa � = 160, κ = 1 ((d)–(f)) systems. The curves are plotted for multiples of the smallest accessible wavenumber
k̄min = 0.0886. (g) and (h) show the dependence of L(k, ω) and T (k, ω), respectively, on κ , at fixed wavenumber k̄ = 1.063. (� = 360 for
κ = 2, and � = 1050 for κ = 3.)

sound velocities sL and sT [68, 98] (see equation (32)). For
the longitudinal mode the simulation data well corroborate
the theoretical predictions with the proviso already noted in
relation to the 3D liquid: that, while the theoretical calculations
provide an oscillatory dispersion curve for k̄ > 3 (see figure 1),
simulations provide reliable results (for collective excitations)
for the given conditions for k̄ � 3 only. In the case of the

transverse mode, the agreement between theory and MD data
for moderately high k values is fairly good; for k → 0 the
agreement is marred by the QLCA’s inability to account for
diffusional and other damping effects [98] that preclude the
existence of long-wavelength shear waves in the liquid state.
As a result of this damping, a cutoff at a finite kc and zero
frequency develops (a similar phenomenon was observed in the
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Figure 18. 2D Yukawa and Coulomb liquids: dispersion curves for (a) the longitudinal (L) and (b) transverse (T ) modes at �	 = 120 and
κ = 0, 1, 2, 3. Continuous curves: QLCA calculations; symbols: MD simulation; dashed lines: RPA dispersions. Reproduced from [71].
Copyright (2004) by the American Physical Society.

Figure 19. 2D Yukawa and Coulomb liquids: (a) sound velocities (heavy lines with circles: calculated from QLCA at �	 = 120, thin lines:
hexagonal crystal lattice [80], dotted line: RPA values for sL, dashed lines: 3D values at � = 160, open triangles: thermodynamic sound
velocity) [70, 71]; (b) calculated Einstein frequency as obtained from the QLCA formula for �	 = 120. Reproduced from [71]. Copyright
(2004) by the American Physical Society.

3D case [53, 93]). The kc value is related to the diffusional–
migrational time [98] through τDM = 1/kcsT, where sT is the
transverse sound velocity. Incorporating τDM, calculated with
the aid of the theoretically predicted sT values, in the QLCA
equations as a phenomenological damping ν = 1/τDM (by
the ω → ω + iν replacement), good agreement between the
theory and the MD data was restored [71]. The simulations
show that the longitudinal mode is not affected by this damping
mechanism: this may indicate that its characteristic damping
time is substantially longer.

The sound velocities and the Einstein frequency—given
as the k → ∞ limit of equations (26) or (28)—are
shown in figure 19. For comparison, also displayed is the
thermodynamic sound velocity generated from the equation of
state of a Yukawa liquid [32]. The sound velocities obtained
here are extremely close to those of the hexagonal crystal [80].
The Einstein frequency diminishes rapidly with increasing κ ,
similarly to the 3D case [70, 94].

It is of interest to follow the evolution of the mode
structure across the liquid–solid phase boundary, as the
isotropic liquid dispersion transits into the anisotropic
dispersion of the solid state. This is illustrated for the
κ = 2 case in figure 20. � = 500 represents a relatively
high temperature solid, where lattice defects may already
show up, but the overall behavior (sharp separation of the
mode frequencies along the x and y directions; compare,
for example, the curves labeled T x and T y) reflects the

conservation of the triangular crystalline structure. The � =
405 case corresponds to a temperature slightly higher than
the melting temperature (our results indicate that the transition
occurs at � ∼= 415 for κ = 2 [82]), where all quasi-long-range
order in the system has already been extinguished, but locally
most of the particles sit in the somewhat distorted hexagonal
environment. The ‘oscillatory’ feature in the T mode around
k̄ = 2.5 can be taken as an indication of the transition from
the ordered lattice to the disordered liquid state through the
formation of disoriented domains of local hexagonal order. The
orientation of these domains becomes more uncorrelated with
increasing temperature. The � = 200 system is a typical
strongly coupled liquid. Most prominent features are the
isotropy of the dispersion (x and y directions are equivalent),
and the appearance of a finite wavenumber cutoff for the T
mode.

The behavior of the velocity autocorrelation function Z(t)
of the 2D liquid is very similar to its 3D counterpart, at least
for short times. Representative Z(t) functions obtained at
different screening parameter values are shown in figure 21(a).
These functions, when plotted against ωEt , exhibit nearly
universal behavior (see figure 21(b)), indicating the relevance
of the Einstein frequency in determining the single-particle
properties [32]. While the in-depth analysis of the long-time
behavior of the velocity autocorrelation function is beyond
the scope of this paper, it is noted that in low-dimensional
systems Z(t) may exhibit a slow power law decay, which
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Figure 20. 2D Yukawa systems: comparison of MD (L and T)
dispersions in the solid phase (� = 500), just below the melting
transition (� = 405) and in the liquid phase (� = 200) for κ = 2.
Shown are both x and y polarizations, where x is in the direction to
the nearest neighbor in the hexagonal lattice. Reproduced from [82],
copyright (2007) by the Institute of Electrical and Electronics
Engineers.

makes it non-integrable [99]. As a consequence the diffusion
coefficient may not exist for some 2D systems. The case of 2D
Yukawa liquids has attracted considerable attention during the
last few years [100–103]. These studies have found very nearly
Z(t) ∝ t−1 decay of the velocity autocorrelation function and
superdiffusion to exist for certain conditions.

Similarly to the 3D case, numerical experiments were also
performed for the 2D case to determine the distribution of
the microscopic Einstein frequencies. A series of frequency
histograms for �	 = 120 at different values of κ are shown in
figures 22(a)–(d). We observe two peaks in the distributions,
which gradually get wider with increasing κ . The QLCA
results are again in very good agreement with the mean values
of the distributions. A wider frequency distribution appears
when � is lowered (see figure 22(a)). The distributions of
the sums of the two microscopic squared Einstein frequencies
ω̄2

E—as shown in figure 22(e)—are in contrast with the 3D
situation. Here we do not find qualitative differences between

the κ = 0 Coulomb and the κ �= 0 Yukawa cases, for reasons
discussed in section 3.

The angular distribution of the polarization vector of
the higher frequency normal mode oscillation has also been
analyzed, as an indicator of the prevailing disorder [104].
Figure 23 shows the distribution of the polarization angle for
the higher frequency normal mode for different values across
the crystallization boundary (at � ∼= 415). As discussed
in section 3, both the liquid (away from the phase transition
boundary) and the perfect lattice (extremely high � values)
exhibit a full rotational symmetry, while in between the sixfold
symmetry of the lattice prevails.

The diagram showing the widths of the spectra of
the dynamical structure functions is displayed in figure 24.
Comparison with data for the 3D Yukawa liquid reveals that
the trends and orders of magnitude in the two cases are not
substantially different. The dependence of the width of the
peaks in the S(k, ω) spectra as a function of the reduced
coupling parameter follows the form �ω/ω0

∼= 0.76(�	)−2/3,
as is shown in figure 25. This monotonically decreasing
function of the coupling may change character at lower
coupling values, for which data are at present are not available.
This is expected on the basis of the prediction by Hansen et al
[50] (for the 3D case): for weak coupling the width is expected
to increase from its Vlasov value where S(k, ω) should be
extremely sharp, since higher coupling leads to higher collision
frequency and thus to stronger damping. Once, however,
localization sets in, further increase in the coupling is expected
to create better localization and thus a reduction in the collision
frequency and in the width. Thus, generation of data for lower
� values would be desirable, to see whether a turnaround point
really exists.

4.3. Quasi-two-dimensional Yukawa liquids confined by a
parabolic potential

The model adopted for the 2D Yukawa system, which assumes
that the particles are constrained to move entirely within an
ideal plane, can be extended to describe more accurately
the situation found in physical systems, by allowing small
amplitude displacements of the particles perpendicular to
the plane. In this extended model one applies a parabolic
potential along the direction perpendicular to the plane, which
then results in a quasi-two-dimensional confinement. Such
confinement gives rise to a particle layer with finite width, or—
at weaker confinement—to a sequence of multilayer structures,
when the confinement or interaction potential is varied. The
structural phase transitions (a change in the number of layers
and in the accompanying crystal structures), relevant to particle
traps, have theoretically been studied by Dubin [105], while
Totsuji et al [106], Bystrenko [107] as well as Qiao and
Hyde [108] investigated the formation of layers in Coulomb
and Yukawa systems in confined quasi-2D configurations.

The number of layers formed in the liquid phase depends
on the strength of the confinement. In contrast to the idealized
2D systems the layers have a finite width. Here we deal with
the domain of parameters when a single layer is formed. At
higher numbers of layers the mode structure is expected to
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Figure 21. 2D Yukawa and Coulomb liquids: (a) velocity autocorrelation functions for a series of κ values. (b) The same data as a function of
ωEt . The (�, κ) pairs correspond to the same effective coupling �	. Reproduced from [32]. Copyright (2005) by the American Physical
Society.

Figure 22. 2D Yukawa and Coulomb liquids: Einstein frequency distributions for �	 = 120: (a) � = 120, κ = 0; (b) � = 160, κ = 1;
(c) � = 360, κ = 2; (d) � = 1050, κ = 3; the vertical bars indicate values obtained by the QLCA theory. (a) also shows the frequency
distribution obtained at a lower coupling value � = 10. (e) Distribution of ω̄2

E for the same systems.

be more complex [109–111], but the study of these modes
is not within the scope of the present analysis. In a single-
layer configuration the third degree of freedom of the particles,
the displacement perpendicular to the plane, gives rise to an
additional collective excitation, the ‘out-of-plane’ P mode,
besides the ‘in-plane’ L and T modes found in (ideal) 2D

layers. The out-of-plane mode in the crystallized state has been
studied through simulations by Qiao and Hyde [112]. Results
pertaining to the strongly coupled liquid phase were analyzed
in [113] and will be summarized below. It should also be
noted that a somewhat similar physical situation arises when
a 1D chain of particles is confined in the transverse direction
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Figure 23. 2D Yukawa systems: distribution of the polarization
angle for the higher frequency normal mode for different values of
the coupling parameter � across the crystallization boundary. κ = 2.
Reproduced from [104], copyright (2007) by the Institute of
Electrical and Electronics Engineers.

by a parabolic potential: indeed, there is a similarity between
the modes that represent excursions along the direction of the
confining force in the 1D and 2D systems.

In the quasi-2D liquid system the particles can freely move
in the (x, y) plane while a confinement potential Vc(z) ∝ z2

acts upon them when they are displaced from the z = 0 plane.
The confinement force is linear with respect to the ‘vertical’
displacement:

Fz = − f0
Q2

4πε0a3
z, (58)

where the strength f0 (besides � and κ) is the third
characteristic parameter of the system. At f0 = 1 the
confinement force at a vertical displacement z = a is equal
to the magnitude of the force between two particles separated
by a (defined by (5)), interacting via Coulomb potential.
Information about the (thermally excited) collective modes and
their dispersion is obtained from the analysis of the correlation
spectra of the longitudinal and (in-plane as well as out-of-
plane) transverse current fluctuations. For the ‘in-plane’ L
and T modes we use equation (11), while for the out-of-
plane mode the corresponding microscopic current π(k, t)
(that characterizes the P mode) is obtained as

π(k, t) = k
∑

j

v j z(t) exp[ikx j(t)]. (59)

Figure 24. 2D Yukawa and Coulomb liquids: spectral linewidth for κ = 0 and 2 at �	 = 40 ((a), (c), (e)) and �	 = 120 ((b), (d), (f)). Shown
are FWHM (full width at half-maximum) values for the most prominent peaks in the S(k, ω), L(k, ω) and T (k, ω) spectra.
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Figure 25. 2D Yukawa and Coulomb liquids: linewidths of the
S(k, ω) spectra as a function of the reduced coupling parameter �	,
at a fixed wavenumber k̄ = 1.0.

Representative current fluctuation spectra for the three (L,
P and T ) modes are displayed in figure 26, for � = 100,
f0 = 2.0 and two different values of the screening parameter
κ = 0.27 and 1.33. The frequency is normalized according
to (7). We observe sharp peaks in the L(k, ω) spectra, similarly
to the case of (ideal) 2D Coulomb and Yukawa liquids [52, 71],
characteristic of long-lifetime collective excitations [114].
Peaks in the T mode spectra (see figures 26(g) and (h)) show up
only above a certain (cutoff) wavenumber, similarly to the case
of 2D and 3D Yukawa systems, as discussed in the previous
sections.

The P mode possesses a finite frequency at k = 0, which
is, in general, characteristic of an optical mode. The first
identification of this pseudo-optical behavior in a confined 2D
system is due to [114]. At small wavenumbers the peaks of
the spectra shift to lower ω as k̄ is increased. The width of the
peaks of the P(k, ω) spectra become gradually broader when
κ is increased, as can be seen in figures 26(e) and (f). It is
noted that, on the other hand, the peaks become narrower as the
strength of the confining potential, f0, is increased, which is an
indication of an increasing lifetime of this collective excitation.

The dispersion relations derived from the spectra are
displayed in figure 27 for different values of f0 and κ for
� = 100. At constant κ , as shown in figure 27(a), the
frequency of the out-of-plane mode changes significantly as
the strength of the confinement force, f0, is varied. The L and
T modes are only slightly affected by the value of f0. The
frequency of these modes is somewhat smaller at f0 = 1.4,
which is near the lower bound of f0 for the formation of a
single layer [113]. It is noted that, at lower f0 values, when two
layers are formed, two longitudinal and two in-plane transverse
modes appear, similarly to those identified in the classical
(ideal) bilayer system [109]. Additionally, two out-of-plane
transverse modes also emerge in the two-layered system, which
are also believed to be in-phase and out-of-phase modes (when
particles in the two layers oscillate in phase or with a phase
difference of 180◦ in the two layers). The L mode exhibits a
quasi-acoustic behavior, with a linear portion of the dispersion
curve around k = 0, which widens with increasing κ , as can
be seen in figure 27(b). The T mode shows an acoustic ω ∼ k
dispersion at small k, with a cutoff at a finite wavenumber.

For the P mode dω/dk < 0 in the k̄ � 2.1 domain.
At higher wavenumbers, the frequency of the mode slightly
increases with k. This observation on the liquid system agrees
well with that on the crystallized system [112], where the same
behavior was found, except that in the latter system the critical
wavenumber (at which the group velocity dω/dk changes from
negative to positive) also depends on the direction of the
propagation.

At k = 0 the whole layer oscillates in unison in the
potential well with a frequency

ω(k = 0)

ω0
= √

f0/2. (60)

A smaller confinement force results in a smaller ω(k = 0) and
ω(k → ∞). At a constant f0 the value of ω(k = 0) does
not change when κ is varied, but—as shown in figure 27(b)—
ω(k > 0) increases with decreasing κ . This is explained by the
decreased interparticle force (at an average particle separation)
at higher κ .

The frequency of the out-of-plane mode at the k → ∞
limit (i.e. the Einstein frequency [35, 33]) can be calculated by
considering the forces acting upon a single particle displaced in
the z direction, while all other particles are in rest in the z = 0
plane. The force is the sum of the confining force and the force
due to repulsion by the other particles:

F(z) = − f0
Q2

4πε0a3
z + Fr(z). (61)

The Fr(z) contribution can be calculated as Fr(z) = −∂Vr/∂z,
where Vr(z) is the potential distribution due to a charge
distribution ρ(x, y) in the z = 0 plane. To obtain ρ(x, y)
one may either use the radial (2D) pair correlation function
(PCF) or consider the particles occupying hexagonal lattice
sites in the z = 0 plane. The Fr(z) force is found to be a
nearly linear function of the displacement z, in the |z| < 0.3a
domain, where the particle displacement is expected to fall.
The resulting (Einstein) frequency (when the particles in the
z = 0 plane are situated at lattice sites) is [113]

�E

ω0
= ω(k → ∞)

ω0

∼=
√

f0 − 1.63 exp(−1.37κ)

2
. (62)

In the case of using the disordered configuration in the z = 0
plane instead of lattice sites (through PCFs obtained in the
liquid state simulations), a frequency very close to that given
by (62) is obtained. At low values of κ the Einstein frequency
ωE is significantly lower than ω(k = 0), as illustrated in
figure 28. In the high κ limit the two frequencies are equal,
as the screening becomes very strong and the particles interact
very weakly. In this case the frequency of the P mode becomes
nearly independent of k̄.

5. Experimental results

Experimental results on wave propagation and collective
excitations in Yukawa systems have been accumulating from
complex (dusty) plasma experiments since the mid-1990s.
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Figure 26. Quasi-2D Yukawa liquids: dynamical structure function [S(k,ω)], longitudinal [L(k, ω)] and out-of-plane as well as in-plane
transverse (P(k, ω) and T (k, ω)) current fluctuation spectra for κ = 0.27 ((a), (c), (e), (g)) and κ = 1.33 ((b), (d), (f), (h)). The S, L , and P
spectra are plotted for multiples of the smallest accessible wavenumber k̄min = 0.0886, while the T spectra are shown for higher wavenumbers
indicated by the labels in (g) and (h). The arrows in (a)–(f) indicate increasing wavenumbers. Confining force: f0 = 2. Reproduced
from [113], copyright (2004) by the American Physical Society.

Experiments have been carried out both on spontaneously
generated and on externally excited waves. An early laboratory
observation of longitudinal modes was reported by Barkan
et al [115] in 1995, followed by a more detailed study in
1997 [116]: these authors observed spontaneously generated

waves in dust that filled a volume with a cylindrical geometry.
These waves grew as the result of the dust-acoustic instability,
which was driven by an ion flow, and the experimenters
were able to measure the wavelength and propagation speed.
An early effort to excite waves by manipulation using
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Figure 27. Quasi-2D Yukawa liquids: dispersion relations for (a) κ = 0.27 and different values of the amplitude f0 of the confining potential
and (b) for fixed f0 = 2 and different values of the screening parameter. Reproduced from [113]. Copyright (2004) by the American Physical
Society.

an electrically biased wire was reported by Pieper and
Goree [117], who also introduced a method of data analysis
that yields the real and imaginary parts of the wavenumber
for the applied frequency. Repeating the measurements at
various frequencies yielded a dispersion relation. In some of
these early experiments the ambient pressure was kept high
in order to avoid instabilities. As a result, as pointed out by
Rosenberg and Kalman [72], the waves were strongly damped,
primarily by grain-neutral collisions. Thus, even though the
experiments were conducted under strongly coupled conditions
in the liquid state, the strong collisional damping washed away
the difference between weakly coupled and strongly coupled
dispersions (see [64, 72] for a more detailed discussion).
Two recent experiments have further corroborated this picture.
Bandyopadhyay et al [118] investigated the acoustic dispersion
of the longitudinal mode in the strong coupling regime over a
wide range of neutral pressure values and found the ∂ω/∂k <
0 behavior of the dispersion curve that, in the low collisional
domain, could be attributed to correlational effects. On the
other hand, the experiment reported by Annibaldi et al [119],
in the high collisional regime, confirmed that in this domain
the strong coupling effects were washed away completely.

The first experiments where strong coupling effects were
clearly displayed were done on a 1D complex plasma in the
crystalline state, realized as a chain of grains held together in
the transverse direction by a confining potential. Longitudinal
waves (along the direction of the chain) excited by the
radiation pressure of a laser beam [120, 121] in a parallel
plate radio-frequency discharge were observed: the analysis
led to the conclusion that the weakly coupled theory of the
longitudinal waves (referred to as ‘dust-acoustic waves’ [122])
was inadequate, while the description in terms of harmonic
phonons of a system with short-range interaction (referred to
as ‘dust lattice waves’ [123]) provided a more satisfactory
agreement with experiments.

Generation of 3D complex plasmas in the laboratory under
strong coupling conditions and at sufficiently low pressure,
so that strong coupling effects become manifest, turned out
to be difficult. A good summary of the state of affairs as of

Figure 28. Quasi-2D Yukawa liquids: the relation between the
frequency ω(k = 0) and the Einstein frequency of the P mode for
different values of the screening parameter κ . Reproduced
from [113]. Copyright (2004) by the American Physical Society.

2000 is given by [64]. This paper and a later work [124]
also discuss the spontaneous excitation of shear-wave-like
structures in a strongly coupled liquid at a low pressure. The
plasma originally was in a 3D configuration, but assumed a
layer structure in the course of the experiment, with particle
excursions in the direction perpendicular to the layers. Thus
it seems difficult to judge whether the observed waves were
indeed shear waves or some more intricate excitation in the
coupled layer system.

The presence of the ion beam traversing the dust
plasma generated in low-pressure gas discharges can create
issues that cannot be approached within the Yukawa model.
Because of the anisotropy introduced by the ion beam,
the Yukawa interaction will be modified in the vertical
direction (along the beam), but probably not too much in the
horizontal plane [125, 126]. This scenario was supported
by experiment [127–130]. A further major problem due to
the ion beam in the 3D geometry was identified by Joyce
et al [131] that, in the low-pressure domain, where collective
modes could be observable, ion–dust instability may lead to
melting. To avoid these problems, most of the subsequent
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laboratory experiments were to favor 2D geometries over three-
dimensional ones: in a 2D system these problems should be
absent. Since 1998 substantial progress in the understanding
of the excitation and propagation of waves in 2D Yukawa
systems has ensued. In the strong coupling regime the
plasma constituted of grains is, in principle, either in the
crystalline solid or in the liquid state. In fact, in addition to
the formation of large scale ordered lattice structures a more
common configuration is an aggregate of micro-crystals whose
prevailing disorder is expected to make the behavior of the
aggregate quite similar to that of the liquid state.

Longitudinal waves in a 2D dust plasma crystal were first
observed experimentally in a parallel plate radio-frequency
discharge by Homann et al [132]. The observation of
transverse (in-plane) shear waves, the hallmark of strong
coupling, excited by a chopped laser beam was reported by
Nunomura et al [85]. Their measurements of the dispersion
relation revealed an acoustic, i.e. non-dispersive, character
over the entire range of wavenumbers measured, (0.3 < k̄ <
1.2), at κ ≈ 0.74, with transverse sound speed and Einstein
frequency values in agreement with theory [79, 80].

A series of beautiful experiments on the generation of
Mach cones in the wake of an object moving through a 2D
dusty plasma crystal was also crucial, albeit in an indirect
way, in determining the strong coupling characteristics of these
systems. It was unambiguously shown [133–135] that Mach
cones appear when the velocity of the moving object (particle
or laser spot) exceeds the longitudinal sound speed sL in the
medium. Subsequent observations [136] with object velocities
below this limit, but above the transverse shear sound speed sT

(the ratio of the two speeds had the value sL/sT = 4.48 in the
experiment) also demonstrated the excitation of a small-angle
Mach cone sustained by the transverse mode.

More recent experiments done both on the 2D solid and
liquid phases have been able to determine plasma parameters
with sufficient accuracy and to perform measurements of
large numbers of observables, so that detailed quantitative
comparisons with the theoretical predictions have become
possible. Experiments by Nunomura et al [137] introduced
laser manipulation, which avoided technical problems caused
earlier by the electrical wires, and the dispersion relations
were measured with greater accuracy. Subsequently Nunomura
et al [138] detected the spectra of self-generated longitudinal
and transverse excitations along the two principal axes of
a triangular lattice. The energy was concentrated along a
well-defined ω(k) curve, representing the measured dispersion
relation. The data covered the 0 < k̄ < 3.3 domain with
κ ≈ 0.74; our comparison with the theoretical dispersion
curves calculated by Peeters and Wu [80] and by Sullivan
et al [83] shows excellent agreement with these data. A
partial frequency spectrum (i.e. density of states), based on
the kinetic energy contents of the four selected modes was
also generated: while comparison with the calculated spectrum
(see section 3) is possible, agreement beyond what is visible
in figure 29 is not expected, since the theoretical spectrum
includes all propagating modes [139]. In a subsequent
work [140] the spectrum of waves was measured also for a
number of directions in between the principal axes and over a

Figure 29. 2D system: density of states as obtained from the
experiment of Nunomura et al [138] and by theory.

much broader domain of wavenumber values: 0 < k̄ < 6.6.
In addition to the frequencies, the polarization angles of the
modes were also determined (the mode polarizations can be
described as ‘longitudinal’ and ‘transverse’ for propagation
along the principal directions only). All these data show
excellent agreement with theory [80, 83] (see figure 30).

Following a different line of approach Melzer [141]
studied the normal modes of small 2D clusters of grains; what
is of interest in the present context is the transition from the
mode spectrum of a finite number of particles into that of an
‘infinite’ system. With a somewhat arbitrary assignment of
labels for the normal modes, it was found that the average
frequency as a function of k provides a fair resemblance
to the ω(k) dispersion of the infinite lattice already for a
cluster as small as consisting of 34 particles. The scatter of
frequencies around the ω(k) curve is, of course, substantially
higher than in the experiments quoted above. (For somewhat
related results see [34].) The theoretical understanding of
the distribution of dynamical frequencies (as a function of
temperature and particle number) presents a major theoretical
challenge, with a very limited body of antecedents available
in the literature [66, 142]. The possibility of generating
experimentally observable scenarios from which information
on the frequency distribution can be extracted should provide a
stimulus for new theoretical efforts.

As to the liquid state, observational data available at the
present time are quite recent and still rather limited. Nunomura
et al [15] studied the change of the thermally excited mode
structure as the crystal lattice was melted and the system
transited to the strongly coupled liquid state. The melting was
achieved by directed laser heating. The theoretically predicted
trends, such as the development of a cutoff wavenumber for the
shear mode and the shift of the longitudinal mode frequency
towards higher values, are in fair agreement with MD data. On
the other hand, the widths of the spectra seem to be higher than
expected. It is difficult to relate the results of the MD studies of
the break-up and isotropization of the lattice modes [82] to this
experiment, since the � values where the observations of the
liquid state were done are quite far from the phase transition
point.

A careful study of the transverse modes in the strongly
coupled liquid state, in the vicinity of the melting point, is
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Figure 30. 2D system: wave dispersion in directions (a) 0◦, (b) 10◦, (c) 20◦ and (d) 30◦ (measured from the nearest-neighbor direction) as
obtained in the experiment of Zhdanov et al [140] and calculated from lattice summation (heavy lines). Experimental data reproduced
from [140] with kind permission of the authors. Copyright (2003) by the American Physical Society.

due to Piel et al [16]. These authors analyzed the propagation
of externally excited shear waves through a sophisticated data
analysis technique that made it possible to collect information
from a high noise environment. The experimental situation
corresponded to κ ≈ 0.4, which allowed the comparison
with the QLCA data for κ = 0 and 1 as lower and upper
bounds. The authors found that, within the wavenumber
domain investigated (0 < k̄ < 2.5), the overall agreement
between experiment and the QLCA model is quite satisfying.
They note that, even in the solid state, the waves assume
characteristics resembling those in the liquid state (angularly
averaged dispersion), because the plasma crystal consists of
domains of different orientations. For this reason there does
not seem to be too much change in the dispersion as one passes
from the solid phase to the liquid phase. On the other hand, the
damping is substantially higher on the liquid side and becomes
stronger for low k values.

Since the homogeneous liquid cannot sustain long
wavelength shear, the shear mode must vanish below some
finite kc value. The value of this cutoff wavenumber was
recently studied by Nosenko et al [17] in a low-pressure
experiment. At the κ ≈ 0.43 of the experiment k̄c ranges
between 0.16 and 0.31, as the coupling strength � is varied
from the melting value � = 155 down to � = 60. These
values compare favorably with the values obtained by the MD
simulations reported in [71] (see figure 31). This can be taken
as an indication that the cutoff is attributable to the intrinsic
dynamics of the grains. Thus one can conclude that at low
pressures the contribution of the grain-neutral collisions to the
generation of the cutoff is quite negligible.

Figure 31. 2D Yukawa liquids: transverse mode cutoff wavenumber
k̄c. Experimental values are taken from [17] and are compared with
2D Yukawa molecular dynamics results.

There are experiments on 1D chains of grains held
together in the transverse direction by a confining potential
which reveal (in addition to the observation of longitudinal
waves on such systems quoted above [120, 121]) excitations
in the direction perpendicular to the axis of the chain. These
modes bear physical features similar to the shear waves in 2D
systems. In particular, they exhibit the benchmark pseudo-
optic behavior and the ensuing negative dispersion predicted
by theory for the latter [108, 112, 113]. Experimentally, the
mode dispersion was determined by analyzing spontaneously
excited waves by Misawa et al [143] and by creating the
transverse waves through the manipulation of a single particle
by Liu et al [144, 145], confirming these predicted features.
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In the 2D geometry, self-excited out-of-plane oscillations of
particles were identified first by Nunomura [146]. Samsonov
et al [147] investigated the propagation of wavepackets in the
vertical (i.e. along the confinement) direction (see section 4.3
for more details) and confirmed the predicted dispersion
characteristics [108, 112, 113] of the out-of-plane (P , pseudo-
optic) mode.

6. Summary

The objective of this review has been to summarize the
huge body of information that has been gathered since the
1990s through theoretical analysis, computer simulations and
laboratory experiments on the collective excitations of dusty
(complex) plasmas and from this to determine the collective
behavior of two- and three-dimensional strongly coupled
Yukawa systems. The Yukawa model allows the mathematical
analysis of an idealized system that represents a variety of
actual many-particle physical systems (dusty plasmas, charged
colloids, mesoscopic particles, etc), which are characterized
by (i) a significant ratio of the potential energy (originating
from the high charge value of the particles) to the kinetic
energy in the system, as expressed through the plasma coupling
parameter �, and (ii) by a particle–particle interaction that is
strongly affected by a polarizable background coexisting with
the main plasma.

Two techniques have been used for the mathematical
modeling: molecular dynamics, as a computational simulation
method, and the quasi-localized charge approximation as
a theoretical scheme. The results generated by the two
independent approaches have been found to be in excellent
agreement with each other, and have been convincingly
supported by the findings of laboratory experiments. Thus
all these assembled data converge into a coherent and fairly
complete physical picture, which has been presented in this
review. Nevertheless, there are quite a few areas that the reader
may have expected to see in this paper, but which have been
excluded from consideration. Thus some qualifying comments
along this line are in order.

• We have considered infinitely large, unbounded two- and
three-dimensional systems only: thus effects relating to
1D geometry, boundary conditions and inhomogeneities
have been excluded. Some finite systems (Yukawa balls
and disks, e.g. [148, 149]) have been attracting much
attention lately.

• A special configuration, familiar in semiconductor
physics, is the bilayer geometry (consisting of two
parallel 2D planes, separated from each other by a
small distance d). While semiconductor devices are
governed by Coulomb interactions, a similar configuration
is also of interest for systems where a Yukawa interaction
prevails [150]. The likelihood of the realization of
such a geometry in laboratory dusty plasma experiments
is not promising using identical grains, but may be
more feasible in a microgravity environment. However,
combining two species of differently sized microparticles
in a conventional laboratory sheath geometry set-up leads
to the automatic formation of a bilayer configuration, due

to the different Z/m ratios, as recently pointed out by
Matthews et al [151] and demonstrated in a subsequent
experiment by Smith et al [152]. Bilayer systems
possess a rich variety of structural phases [150, 153, 154]
and a rather complex collective mode structure whose
details exhibit a remarkable sensitivity to the layer
separation [109, 151, 155]. Further experimental
investigation of this behavior would be of great interest.

• Only single-component systems (the Yukawa equivalent
of the OCP, one-component plasma) have been treated; the
crucially important extension to two- or multicomponent
cases (different masses, different charges) is not here.
Creation of such systems in the current laboratory set-
ups is hampered by technical reasons (but again may
become feasible in a microgravity environment) and
serious theoretical studies are lacking.

• While we have presented simulation data of the dynamical
fluctuation spectra in great detail, the evaluation and
theoretical analysis of most of these data is still to
be carried out. We have focused on the positions of
the peaks in the spectra: the most important question
amongst those whose analysis is incomplete is that of
the widths of the peaks, which, in turn, are characteristic
of the damping of the excitations. What is missing
primarily is a solid theoretical foundation through which
the different mechanisms that lead to the damping of the
collective modes could be reconciled and against which
the simulation data could be tested. The QLCA analysis
points at the main physical effects where the source of the
damping should be sought, but no reliable analytical tool
has emerged that would predict how the damping depends
on the coupling strength and on the wavelength of the
mode.

• The theoretical tool (the QLCA) described in this review is
geared to strong coupling and it provides no linkage from
the localization-dominated strongly correlated behavior to
the fluid-like weakly correlated behavior of the collective
modes. Only more simulation work and a different
theoretical approach would bridge this gap.

• There are both some experimental [140] and simulation
(see figure 8 and [32]) results available on the effect of the
disorder on the collective mode spectrum. Both these and
theoretical considerations suggest that one should think in
terms of frequency distributions, rather than in terms of
well-defined collective mode dispersions.

• We have not discussed effects and phenomena relating to
external or internally generated magnetic fields. These
issues may become the topics of investigation for the next
generation of complex plasma experiments. An externally
imposed magnetic field could affect the polarizable
medium (electrons and ions) and thus alter the effective
interaction potential; at sufficient strength it may even
change the orbits of the mesoscopic plasma particles and
thus the prevailing mode structure [156, 157]. (As an
example, consider a plasma with grains of R = 1 μm,
mass density ρ ∼ 1.5 g cm−3 and Z ∼ 3000; here
a magnetic field of 2 T would produce a dust cyclotron
frequency ωcd ≈ 0.16 rad s−1, and with Td ∼ 0.03 eV a
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gyroradius rgyro ≈ 0.5 cm. Thus, based on the criterion
rgyro < confinement length, the creation of a magnetized
plasma may become feasible. A more restrictive criterion
may, however, emerge from the requirement ωcd >

νcoll, the grain-neutral collision frequency. In a different
vein, systems containing magnetically polarizable plasma
particles are expected to exhibit a series of novel physical
phenomena, both in equilibrium [158] and in terms of
collective excitations [159].

• Transport coefficients may have been a legitimate topic
for consideration in this review, but partly for reason of
economy and partly because their treatment requires a
different (theoretical and simulation) methodology from
those appropriate for the study of wave phenomena,
the subject has not been included. The transport
coefficients of 3D Yukawa systems in the liquid phase
are relatively well known. The self-diffusion was
studied in [94] and estimates for the viscosity were
given in [160]. Molecular dynamics simulations have
proven to be invaluable tools for studies of transport
phenomena and made possible the determination of
shear viscosity and thermal conductivity [87, 161–165].
Recent theoretical work on this topic has focused on
the mapping between Yukawa, Coulomb and hard-sphere
systems [166, 167]. The effect of Langevin dynamics
on the viscosity of 3D Yukawa systems has been studied
in [168]. For recent experimental work on 3D systems
see, e.g., [169]. The realization of 2D complex plasma
liquids and the development of modern experimental
(perturbation and data acquisition) techniques resulted
in renewed interest of transport properties (which are
especially interesting due to the controversies about
the very existence of transport coefficients in low-
dimensional systems). During the last few years
several experimental and simulation studies have been
carried out on the shear viscosity [13, 14, 170–172],
thermal conductivity [173, 174] and diffusion [100, 101]
properties of 2D Yukawa liquids, and this topic is expected
to attract further attention.
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[3] Löwen H, Hansen J P and Roux J N 1991 Phys. Rev. A
44 1169

[4] Hynninen A P and Dijkstra M 2003 J. Phys.: Condens. Matter
15 S3557

[5] Auer S and Frenkel D 2002 J. Phys.: Condens. Matter
14 7667

[6] Konopka U, Morfill G E and Ratke L 2000 Phys. Rev. Lett.
84 891

[7] Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G and
Morfill G E 2005 Phys. Rep. 421 1

[8] Ishihara O 2007 J. Phys. D: Appl. Phys. 40 R121
[9] Thomas H, Morfill G E, Demmel V, Goree J,
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[82] Hartmann P, Donkó Z, Kalman G J, Kyrkos S,
Rosenberg M and Bakshi P 2007 IEEE Trans. Plasma Sci.
35 337

[83] Sullivan T, Kalman G J and Kyrkos S 2005 unpublished
[84] Quinn R A and Goree J 2002 Phys. Rev. Lett. 88 195001
[85] Nunomura S, Samsonov D and Goree J 2000 Phys. Rev. Lett.

84 5141
[86] Brout R 1959 Phys. Rev. 113 43
[87] Saigo T and Hamaguchi S 2003 Phys. Plasmas 9 1210
[88] Lampe M, Joyce G, Ganguli G and Gavrishchaka V 2000

Phys. Plasmas 7 3851
[89] Rabani E, Gezelter J D and Berne B J 1997 J. Chem. Phys.

107 6867
[90] Lai Y J and I L 2002 Phys. Rev. Lett. 89 155002
[91] Daligault J 2006 Phys. Rev. Lett. 96 065003
[92] Hamaguchi S and Ohta H 2000 J. Physique IV 10 Pr5–19
[93] Ohta H and Hamaguchi S 2000 Phys. Rev. Lett. 84 6026
[94] Ohta H and Hamaguchi S 2000 Phys. Plasmas 7 4506
[95] Totsuji H and Kakeya N 1980 Phys. Rev. A 22 1220
[96] Schmidt P, Zwicknagel G, Reinhard P G and Toepffer C 1997

Phys. Rev. E 56 7310
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